A comparison of RTA T363 and ASTM C1260 accelerated mortar bar test methods for detecting reactive aggregates

2001 ◽  
Vol 31 (4) ◽  
pp. 655-663 ◽  
Author(s):  
Ahmad Shayan ◽  
Howard Morris
2021 ◽  
Author(s):  
Medhat Shehata ◽  
Robert Johnson

The effectiveness of accelerated tests in evaluating the Alkali-Silica Reactivity of Recycled Concrete Aggregates was evaluated. The Accelerated Mortar Bar Test was found effective for evaluating potential alkali-reactivity when the test variables, such as crushing method and absorption, are carried out in a well-defined process. The method of crushing was found to have significant impact on the expansion. The Concrete Microbar Test (CMBT) provides good correlation to the expansion of Concrete Prisms incorporating Supplementary Cementing Materials when an expansion limit of 0.10% at 56 days or 0.04% at 28 days were used, based on the limited number of tests carried out here.


2021 ◽  
Author(s):  
Medhat Shehata ◽  
Robert Johnson

The effectiveness of accelerated tests in evaluating the Alkali-Silica Reactivity of Recycled Concrete Aggregates was evaluated. The Accelerated Mortar Bar Test was found effective for evaluating potential alkali-reactivity when the test variables, such as crushing method and absorption, are carried out in a well-defined process. The method of crushing was found to have significant impact on the expansion. The Concrete Microbar Test (CMBT) provides good correlation to the expansion of Concrete Prisms incorporating Supplementary Cementing Materials when an expansion limit of 0.10% at 56 days or 0.04% at 28 days were used, based on the limited number of tests carried out here.


2019 ◽  
Vol 53 (3) ◽  
pp. 400-412 ◽  
Author(s):  
Ian Sims ◽  
Khaled Hassan ◽  
Murray Reid ◽  
Mohammed bin Saif Al-Kuwari ◽  
Mohamed Attia ◽  
...  

Deposits of Wadi gravel are available in many parts of the Gulf region, but not widely utilized as aggregate for concrete, mainly due to the possibility of internal sulfate attack, plus the perceived risk of alkali aggregate reactivity (AAR). This paper describes the investigations for AAR of the Wadi gravel in this case, as part of the wider study described in Part 1 of this paper.Wadi gravel from the Mekaines site in Qatar was subjected to petrographic analysis, plus the gel-pat and accelerated mortar-bar test methods. The AAR potential was found to be low to normal. The accelerated mortar-bar test exhibited ‘innocuous’ behaviour after 14 days of immersion in alkali solution. When separately testing the constituent rock types of the Wadi gravel, limestone and quartz returned innocuous results, while rhyolite, granite and quartzite returned potentially alkali silica reactive (ASR) results and some reaction was confirmed using post-expansion petrographic examination.Wadi gravel was classified as potentially reactive in the RILEM AAR-4.1 accelerated concrete prism test, but of ‘low reactivity’ in the BS 812-123 test over the longer period of 12 months. Overcoming the potential problems of gypsum content and AAR successfully provides a valuable local resource of Wadi gravel aggregate for concrete.


2021 ◽  
Author(s):  
Robert C Johnson

This thesis reports the findings of a study carried out to determine the effectiveness of Accelerated Tests in evaluating the Alkali-Silica Reactivity of Recycled Concrete Aggregates. The study evaluated the variability of the Accelerated Mortar Bar Test due to test variables as well as the single and multi-laboratory variation. The variability of the Concrete Microbar Test due to test variables and the correlation to results from Accelerated Mortar Bar and Concrete Prism Test results were also evaluated. The tests were corroborated by comparing the porosity, permeability and alkali binding capacity of samples tested by the accelerated tests. It was found that the Accelerated Mortar Bar Test provides acceptable results when the test variables, such as crushing methods and absorption values, are carried out and evaluated properly. The Concrete Microbar Test was found to underestimate the expansion of reactive aggregates. However, the same test was found to provide good correlation to the expansion results of Concrete Prisms incorporating Supplementary Cementing Materials when the test duration was increased.


2013 ◽  
Vol 37 ◽  
pp. 143-153 ◽  
Author(s):  
Seyed M.H. Shafaatian ◽  
Alireza Akhavan ◽  
Hamed Maraghechi ◽  
Farshad Rajabipour

2013 ◽  
Vol 2 (1) ◽  
pp. 20120030 ◽  
Author(s):  
Matthew P. Adams ◽  
Angela Jones ◽  
Sean Beauchemin ◽  
Robert Johnson ◽  
Benoit Fournier ◽  
...  

2014 ◽  
Vol 936 ◽  
pp. 1428-1432
Author(s):  
Tong Chao Liu ◽  
Bo Xiao ◽  
Gu Hua Li ◽  
Nian Hong Luo ◽  
Long Sheng Zhang

The study used the method of accelerated mortar bar test to study alkali aggregate reaction (ASR) with sandstone aggregate. Both fly ash and slag can inhibit the expansion of mortar bar. Results show that 50% slag can inhibit ASR reluctantly, but 10% fly ash and 20% slag can inhibit ASR very well, and the inhibitory effect of fly ash is far better than slag. Because of the high content of CaO in slag, it has inhibit and promote aspects, when the ASR is fierce, slag can inhibit ASR, otherwise slag can promote ASR.


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Federico Aguayo ◽  
Anthony Torres ◽  
Tate Talamini ◽  
Kevin Whaley

This study presents the hydration reactivity and alkali silica reaction (ASR) of ultrahigh strength concrete (UHSC) that has been made more sustainable by using spent foundry sand. Spent foundry sand not only is sustainable but has supplementary cementitious material (SCM) characteristics. Two series of UHSC mixtures were prepared using a nonreactive and reactive sand (in terms of ASR) to investigate both the impact of a more reactive aggregate and the use of spent foundry sand. Conduction calorimetry was used to monitor the heat of hydration maintained under isothermal conditions, while ASR was investigated using the accelerated mortar bar test (AMBT). Additionally, the compressive strengths were measured for both series of mixtures at 7, 14, and 28 days to confirm high strength requirements. The compressive strengths ranged from 85 MPa (12,345 psi) to 181.78 MPa (26,365 psi). This result demonstrates that a UHSC mixture was produced. The calorimetry results revealed a slight acceleration in the heat of hydration flow curve compared to the control from both aggregates indicating increased hydration reactivity from the addition of foundry waste. The combination of foundry sand and reactive sand was found to increase ASR reactivity with increasing additions of foundry sand up to 30% replacement.


Sign in / Sign up

Export Citation Format

Share Document