Excess properties of ternary fluid mixtures from simulation, perturbation theory and van der Waals one-fluid theory: size and energy parameter effects

1997 ◽  
Vol 52 (14) ◽  
pp. 2369-2382 ◽  
Author(s):  
K. Fotouh ◽  
K. Shukla
2013 ◽  
Vol 19 (3) ◽  
pp. 449-460 ◽  
Author(s):  
El Abdallah ◽  
C. Si-Moussa ◽  
S. Hanini ◽  
M. Laidi

In this work, the solubilities of some anti-inflammatory (nabumetone, phenylbutazone and salicylamide) and statin drugs (fluvastatin, atorvastatin, lovastatin, simvastatin and rosuvastatin) were correlated using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) with one-parameter mixing rule and commonly used cubic equations of state Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) combining with van-der Waals-1 parameter (VDW1) and van-der Waals-2 parameters (VDW2) mixing rules. The experimental data for studied compounds were taken from literature at temperature and pressure in ranges (308-348 K) and (100-360 bar) respectively. The critical properties required for the correlation with PR and SRK were estimated using Gani and Noonalol contribution group methods whereas, PC-SAFT pure-component parameters; segment number (m), segment diameter (?) and energy parameter (?/k) have been estimated by tihic?s group contribution method for nabumetone. For phenylbutazone and salicylamide those parameters were determined using a linear correlation. For statin drugs, PC-SAFT parameters were fitted to solubility data, and binary interaction parameters (kij and lij) have been obtained by fitting the experimental data. The result was found to be in good agreement with the experimental data and showed that PC-SAFT approach can be used to model solid-SCF equilibrium with better correlation accuracy than cubic equations of state.


1987 ◽  
Vol 52 (1) ◽  
pp. 29-44 ◽  
Author(s):  
Tomáš Boublík ◽  
Benjamin C.-Y. Lu

Van der Waals type of mixing rule for the energy parameter us together with the mixing rules introduced previously for parameters αs and Vs0 of the BACK equation were employed in evaluating excess properties of mixing, Henry's law constant and high pressure vapour-liquid equilibria. A comparison with the experimental data reveals that the BACK equation together with the suggested mixing rules could provide good prediction of equilibrium properties of mixtures of relatively simple molecules.


Sign in / Sign up

Export Citation Format

Share Document