Plasma free fatty acids in mitochondrial fatty acid oxidation defects

1997 ◽  
Vol 267 (2) ◽  
pp. 143-154 ◽  
Author(s):  
G Martı́nez ◽  
G Jiménez-Sánchez ◽  
P Divry ◽  
C Vianey-Saban ◽  
E Riudor ◽  
...  
Metabolites ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 322
Author(s):  
Jae-Eun Song ◽  
Tiago C. Alves ◽  
Bernardo Stutz ◽  
Matija Šestan-Peša ◽  
Nicole Kilian ◽  
...  

In the presence of high abundance of exogenous fatty acids, cells either store fatty acids in lipid droplets or oxidize them in mitochondria. In this study, we aimed to explore a novel and direct role of mitochondrial fission in lipid homeostasis in HeLa cells. We observed the association between mitochondrial morphology and lipid droplet accumulation in response to high exogenous fatty acids. We inhibited mitochondrial fission by silencing dynamin-related protein 1(DRP1) and observed the shift in fatty acid storage-usage balance. Inhibition of mitochondrial fission resulted in an increase in fatty acid content of lipid droplets and a decrease in mitochondrial fatty acid oxidation. Next, we overexpressed carnitine palmitoyltransferase-1 (CPT1), a key mitochondrial protein in fatty acid oxidation, to further examine the relationship between mitochondrial fatty acid usage and mitochondrial morphology. Mitochondrial fission plays a role in distributing exogenous fatty acids. CPT1A controlled the respiratory rate of mitochondrial fatty acid oxidation but did not cause a shift in the distribution of fatty acids between mitochondria and lipid droplets. Our data reveals a novel function for mitochondrial fission in balancing exogenous fatty acids between usage and storage, assigning a role for mitochondrial dynamics in control of intracellular fuel utilization and partitioning.


2014 ◽  
Vol 457 (3) ◽  
pp. 415-424 ◽  
Author(s):  
Marthe H. R. Ludtmann ◽  
Plamena R. Angelova ◽  
Ying Zhang ◽  
Andrey Y. Abramov ◽  
Albena T. Dinkova-Kostova

Transcription factor Nrf2 affects fatty acid oxidation; the mitochondrial oxidation of long-chain (palmitic) and short-chain (hexanoic) saturated fatty acids is depressed in the absence of Nrf2 and accelerated when Nrf2 is constitutively activated, affecting ATP production and FADH2 utilization.


1991 ◽  
Vol 279 (1) ◽  
pp. 147-150 ◽  
Author(s):  
R Rognstad

The pathways of peroxisomal and mitochondrial fatty acid oxidation were monitored with the use of substrates which produce NAD3H. I used as marker substrates: D-[3-3H]3-hydroxybutyrate for mitochondrial NAD3H production, [2-3H]glycerol for cytosolic NAD3H production, and [2-3H]acetate to measure carbon-bound 3H which was also generated by the metabolism of the commercial 9,10-3H-labelled fatty acids. The assumption that peroxisomal NAD3H can be considered to be equivalent to cytosolic NAD3H was supported using a specific inhibitor of mitochondrial fatty acid oxidation. The approach involves determination of the specific yields, and the relative distribution on carbons 4 and 6, of 3H in glucose from the marker substrates and the labelled fatty acids. In hepatocytes from clofibrate-treated rats, the amount of palmitate or oleate oxidation which starts in the peroxisomes is comparable with that which starts in the mitochondria.


2009 ◽  
Vol 296 (3) ◽  
pp. E497-E502 ◽  
Author(s):  
A. Lombardi ◽  
P. de Lange ◽  
E. Silvestri ◽  
R. A. Busiello ◽  
A. Lanni ◽  
...  

Triiodothyronine regulates energy metabolism and thermogenesis. Among triiodothyronine derivatives, 3,5-diiodo-l-thyronine (T2) has been shown to exert marked effects on energy metabolism by acting mainly at the mitochondrial level. Here we investigated the capacity of T2 to affect both skeletal muscle mitochondrial substrate oxidation and thermogenesis within 1 h after its injection into hypothyroid rats. Administration of T2 induced an increase in mitochondrial oxidation when palmitoyl-CoA (+104%), palmitoylcarnitine (+80%), or succinate (+30%) was used as substrate, but it had no effect when pyruvate was used. T2 was able to 1) activate the AMPK-ACC-malonyl-CoA metabolic signaling pathway known to direct lipid partitioning toward oxidation and 2) increase the importing of fatty acids into the mitochondrion. These results suggest that T2 stimulates mitochondrial fatty acid oxidation by activating several metabolic pathways, such as the fatty acid import/β-oxidation cycle/FADH2-linked respiratory pathways, where fatty acids are imported. T2 also enhanced skeletal muscle mitochondrial thermogenesis by activating pathways involved in the dissipation of the proton-motive force not associated with ATP synthesis (“proton leak”), the effect being dependent on the presence of free fatty acids inside mitochondria. We conclude that skeletal muscle is a target for T2, and we propose that, by activating processes able to enhance mitochondrial fatty acid oxidation and thermogenesis, T2 could play a role in protecting skeletal muscle against excessive intramyocellular lipid storage, possibly allowing it to avoid functional disorders.


2019 ◽  
Author(s):  
Helena Urquijo ◽  
Emma N Panting ◽  
Roderick N Carter ◽  
Emma J Agnew ◽  
Caitlin S Wyrwoll ◽  
...  

1991 ◽  
Vol 266 (34) ◽  
pp. 22932-22938
Author(s):  
R.S. Kler ◽  
S. Jackson ◽  
K. Bartlett ◽  
L.A. Bindoff ◽  
S. Eaton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document