Direct comparison of turbulent burning velocity and flame surface properties in turbulent premixed flames

2003 ◽  
Vol 132 (3) ◽  
pp. 492-502 ◽  
Author(s):  
T.W. Lee ◽  
S.J. Lee
Author(s):  
Kazuya Tsuboi ◽  
Shinnosuke Nishiki ◽  
Tatsuya Hasegawa

An analysis of local flame area was performed using DNS (Direct Numerical Simulation) databases of turbulent premixed flames with different density ratios and with different Lewis numbers. Firstly, a local flame surface at a prescribed progress variable was identified as a local three-dimensional polygon. And then the polygon was divided into some triangles and local flame area was evaluated. The turbulent burning velocity was evaluated using the ratio of the area of turbulent flame to that of planar flame and compared with the turbulent burning velocity obtained by the reaction rate.


2000 ◽  
Vol 24 (1A) ◽  
pp. 33-44
Author(s):  
E. Lee ◽  
K.Y. Huh

The Coherent Flamelet Model (CFM) is applied to symmetric counterflow turbulent premixed flames studied by Kostiuk et al. The flame source term is set proportional to the sum of the mean and turbulent rate of strain while flame quenching is modeled by an additional multiplication factor to the flame source term. The turbulent rate of strain is set proportional to the turbulent intensity to match the correlation for the turbulent burning velocity investigated by Abdel-Gayed et al. The predicted flame position and turbulent flow field coincide well with the experimental observations. The relationship between the Reynolds averaged reaction progress variable and flame density seems to show a wrong trend due to inappropriate modeling of the sink and source term in the transport equation.


2013 ◽  
Vol 721 ◽  
pp. 484-513 ◽  
Author(s):  
Dong-Hyuk Shin ◽  
Timothy Lieuwen

AbstractThis paper describes analyses of the nonlinear dynamics of harmonically forced, turbulent premixed flames. A key objective of this work is to analyse the ensemble-averaged dynamics of the flame front position, $\langle \xi \rangle $, excited by harmonic forcing of amplitude $\varepsilon $, in the presence of stochastic flow fluctuations of amplitude $\mu $. Low-amplitude and/or near-field effects are quantified by a third-order perturbation analysis, while the more general case is analysed computationally by solving the three-dimensional level-set equation, extracting the instantaneous flame position, and ensemble averaging the results. We show that different mechanisms contribute to smoothing of flame wrinkles, manifested as progressive decay in the magnitude of $\langle \xi \rangle $. Near the flame holder, random phase jitter, associated with stochastic velocity fluctuations tangential to the flame, is dominant. Farther downstream, propagation of the ensemble-averaged front normal to itself at the time-averaged turbulent burning velocity, $ \overline{{S}_{T, eff} } $, leads to destruction of wrinkles, analogous to the laminar case, an effect that scales with $\mu $. A second, new result is the demonstration that the ensemble-averaged turbulent burning velocity, ${S}_{T, eff} (s, t)$, is modulated by the harmonic forcing, i.e. ${S}_{T, eff} (s, t)= \overline{{S}_{T, eff} (s)} + { S}_{T, eff}^{\prime } (s, t)$, where ${ S}_{T, eff}^{\prime } $ has an inverse dependence upon the instantaneous, ensemble averaged-flame curvature, an effect that scales with $\varepsilon $ and $\mu $. We show that this curvature dependence follows from basic application of Huygens propagation to flames with stochastic wrinkling superimposed upon base curvature. This effect also leads to smoothing of flame wrinkles and is analogous to stretch processes in positive-Markstein-length, laminar flames.


Computation ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 26 ◽  
Author(s):  
Shokri Amzin ◽  
Mariusz Domagała

In turbulent premixed flames, for the mixing at a molecular level of reactants and products on the flame surface, it is crucial to sustain the combustion. This mixing phenomenon is featured by the scalar dissipation rate, which may be broadly defined as the rate of micro-mixing at small scales. This term, which appears in many turbulent combustion methods, includes the Conditional Moment Closure (CMC) and the Probability Density Function (PDF), requires an accurate model. In this study, a mathematical closure for the conditional mean scalar dissipation rate, <Nc|ζ>, in Reynolds, Averaged Navier–Stokes (RANS) context is proposed and tested against two different Direct Numerical Simulation (DNS) databases having different thermochemical and turbulence conditions. These databases consist of lean turbulent premixed V-flames of the CH4-air mixture and stoichiometric turbulent premixed flames of H2-air. The mathematical model has successfully predicted the peak and the typical profile of <Nc|ζ> with the sample space ζ and its prediction was consistent with an earlier study.


2017 ◽  
Vol 36 (2) ◽  
pp. 1817-1825 ◽  
Author(s):  
Johannes Sellmann ◽  
Jiawei Lai ◽  
Andreas M Kempf ◽  
Nilanjan Chakraborty

Sign in / Sign up

Export Citation Format

Share Document