A feature-based approach towards an integrated product model including conceptual design information

2000 ◽  
Vol 32 (14) ◽  
pp. 877-887 ◽  
Author(s):  
G. Brunetti ◽  
B. Golob
Author(s):  
Stefan Wo¨lkl ◽  
Kristina Shea

The importance of the concept development phase in product development is contradictory to the level and amount of current computer-based support for it, especially with regards to mechanical design. Paper-based methods for conceptual design offer a far greater level of maturity and familiarity than current computational methods. Engineers usually work with software designed to address only a single stage of the concept design phase, such as requirements management tools. Integration with software covering other stages, e.g. functional modeling, is generally poor. Using the requirements for concept models outlined in the VDI 2221 guideline for systematic product development as a starting point, the authors propose an integrated product model constructed using the Systems Modeling Language (SysML) that moves beyond geometry to integrate all necessary aspects for conceptual design. These include requirements, functions and function structures, working principles and their structures as well as physical effects. In order to explore the applicability of SysML for mechanical design, a case study on the design of a passenger car’s luggage compartment cover is presented. The case study shows that many different SysML diagram types are suitable for formal modeling in mechanical concept design, though they were originally defined for software and control system development. It is then proposed that the creation and use of libraries defining generic as well as more complicated templates raises efficiency in modeling. The use of diagrams and their semantics for conceptual modeling make SysML a strong candidate for integrated product modeling of mechanical as well as mechatronic systems.


Author(s):  
Fei Gao ◽  
Dieter Roller

Abstract Capturing design process is becoming an important topic of feature-based modeling, as well as in product data exchange, concurrent design, and cooperative design. Three critical issues on the modeling of design process are considered in this paper, namely, feature concepts, feature evolution, and the semantic consistencies of the states of product models. A semantics-based product model is introduced to facilitate the description of both conceptual and detailed models, and to maintain the semantic consistencies of product states. The process is represented by feature states and their evolution records. Feature type variation and prototype-based design are proposed to support feature evolution. A conceptual description of the design process and an example are given.


2020 ◽  
Vol 7 (5) ◽  
pp. 603-614 ◽  
Author(s):  
Mutahar Safdar ◽  
Tahir Abbas Jauhar ◽  
Youngki Kim ◽  
Hanra Lee ◽  
Chiho Noh ◽  
...  

Abstract Feature-based translation of computer-aided design (CAD) models allows designers to preserve the modeling history as a series of modeling operations. Modeling operations or features contain information that is required to modify CAD models to create different variants. Conventional formats, including the standard for the exchange of product model data or the initial graphics exchange specification, cannot preserve design intent and only geometric models can be exchanged. As a result, it is not possible to modify these models after their exchange. Macro-parametric approach (MPA) is a method for exchanging feature-based CAD models among heterogeneous CAD systems. TransCAD, a CAD system for inter-CAD translation, is based on this approach. Translators based on MPA were implemented and tested for exchange between two commercial CAD systems. The issues found during the test rallies are reported and analyzed in this work. MPA can be further extended to remaining features and constraints for exchange between commercial CAD systems.


2012 ◽  
Vol 271-272 ◽  
pp. 974-980 ◽  
Author(s):  
Pai Zheng ◽  
Víctor Hugo Torres ◽  
José Ríos ◽  
Gang Zhao

The design process comprises the Conceptual Phase, the Embodiment Phase and the Detail Design Phase in which commercial PLM/CAD systems mainly support the latter ones. This situation causes the discontinuity in the overall design information flow: Customer Needs (CNs) - Functional Requirements (FRs) – Design Parameters (DPs) – Key Characteristics (KCs) – Geometric Parameters (GPs). There is also a lack of knowledge reuse in routine design process, resulting in large cost-waste of the overall design process. Aiming to enhance the continuity of the design information flow and facilitate the knowledge reuse, this paper makes use of a knowledge-based framework to integrate conceptual design tools: Quality Function Deployment (QFD), Axiomatic Design (AD), Failure Mode and Effects Analysis (FMEA) and the MOKA methodology into CATIA v5 system. A knowledge-based application (KBA) on the large aircraft y-bolt component design is presented as a case study to validate the proposed framework. The result shows how this novel integrated framework and KBA system could benefit designers in a practical way.


Sign in / Sign up

Export Citation Format

Share Document