Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics

2004 ◽  
Vol 34 (6) ◽  
pp. 495-521 ◽  
Author(s):  
Zhong-Shan Deng ◽  
Jing Liu
1963 ◽  
Vol 41 (5) ◽  
pp. 265-268 ◽  
Author(s):  
Thomas J Cook ◽  
Allan L Lorincz ◽  
Alan R Spector

2015 ◽  
Vol 46 (S 01) ◽  
Author(s):  
R. Lampe ◽  
N. Botkin ◽  
V. Turova ◽  
T. Blumenstein ◽  
A. Alves-Pinto

WCET Journal ◽  
2019 ◽  
pp. 18-22
Author(s):  
Hiske Smart ◽  
Eman Al Al Jahmi ◽  
Ebrahim Buhiji ◽  
Sally-Anne Smart

Industrial infrared thermometry devices are large and, despite being less expensive than the current gold standard Exergen Dermatemp medical infrared thermometer, are still not affordable enough to ensure unrestricted and consistent use of this assessment modality in regular wound-related day-to-day practice. An increased skin surface temperature differentiation of 3°F associated with a wound has a positive predictive ability to detect deep or surrounding wound infection. This study hypothesised that inexpensive, pen- or pocket-sized, no-touch surface infrared thermometry devices will be equal in ability to detect a 3oF increased skin temperature compared to the Exergen Dermatemp infrared device and be reliable in the hands of any wound assessor. The odds of the control and other thermometers to detect a 3oF temperature difference, irrespective of the raters, were achieved in all five of the mini thermometers tested, with a correct temperature difference prediction that occurred in 90.933% of the times (odds determined 9/10). As a result of this study mini, no-touch infrared thermometry, to detect a 3oF temperature difference in wound assessment to determine tendency, could be implemented into primary health care clinics, rural clinics, day-to-day hospital practice and standard outpatients departments at a small financial cost, regardless of which thermometer is put to use.


Sign in / Sign up

Export Citation Format

Share Document