secondary salinization
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 45)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 30 (4) ◽  
pp. 675-682
Author(s):  
Jale V. Jafarli

The article is dedicated to definition of the tendency to change and pattern of formation of the chemical regime of underground waters in the Turyanchay-Girdimanchay interfluve in the Shirvan steppe, Azerbaijan as a result of anthropogenic activity. The subsoil waters studied are spread in the zone between the Turyanchay and Girdimanchay rivers. From 1930 to 2019 based on analysis of the observation of the chemical regime of subsoil waters, the natural regime of the groundwaters in the studied area strongly changed as a result of irrigation and construction works. In 1930 the average mineralization degree of subsoil waters was 26.8 gram/liter in the zone. The level of subsoil waters approaches the surface and is exposed to strong evaporation as a result of irrigation and filtration of waters from irrigation channels. Consequently, the mineralization rate of subsoil waters increased and mass secondary salinization process occurred in the irrigated lands. The average mineralization degree of subsoil waters was 33.6–34.5 gram/liter in the research zone in the 1960s-1970s. Collector-drainage networks were built and basic washing of soils is carried out in order the prevent secondary salinization and regulate the level of subsoil waters. After the 1970s the mineralization rate of subsoil waters began to decrease due to basic washing, intensive irrigation and the activity of the collector-drainage network.The average mineralization degree decreased to 15.1 gram/liter. The mineralization degree of the water in the Main Shirvan Collector which takes subsoil waters formed in the zone with 253,000 hectares and which discaharges them into the Caspian Sea decreased more than 3 times in comparison with 1995. At present the mineralization degree of collector water is 1.8–2.5 gram/liter while its mineralization degree was 8.81 gram/liter in 1995. Formation of the process in a favourable direction enchances the potential of using collector water for irrigation, technical and other purposes and creates a basis for elimination of water deficiency in drought years. The research shows that anthropogenic activity mainly plays an important role in formation of the chemical regime of subsoil waters.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yi Zhang ◽  
Haoting Chen ◽  
Shuo Li ◽  
Yang Li ◽  
Mukesh Kumar Kanwar ◽  
...  

Secondary salinization caused by the overaccumulation of calcium nitrate [Ca(NO3)2] in soils due to excessive fertilization has become one of the major handicaps of protected vegetable production. Brassinolide, a bioactive plant steroid hormone, plays an important role in improving abiotic stress tolerance in plants. However, whether and how brassinolide (BR) can alleviate Ca(NO3)2 stress remains elusive. Here, we investigated the effects of exogenous BR on hydroponically grown tomato (Solanum lycopersicum L.) plants under Ca(NO3)2 stress through proteomics combined with physiological studies. Proteomics analysis revealed that Ca(NO3)2 stress affected the accumulation of proteins involved in photosynthesis, stress responses, and antioxidant defense, however, exogenous BR increased the accumulation of proteins involved in chlorophyll metabolism and altered the osmotic stress responses in tomatoes under Ca(NO3)2 stress. Further physiological studies supported the results of proteomics and showed that the exogenous BR-induced alleviation of Ca(NO3)2 stress was associated with the improvement of photosynthetic efficiency, levels of soluble sugars and proteins, chlorophyll contents, and antioxidant enzyme activities, leading to the reduction in the levels of reactive oxygen species and membrane lipid peroxidation, and promotion of the recovery of photosynthetic performance, energy metabolism, and plant growth under Ca(NO3)2 stress. These results show the importance of applying BR in protected agriculture as a means for the effective management of secondary salinization.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3070
Author(s):  
Alexandra Tomaz ◽  
Maria João Costa ◽  
João Coutinho ◽  
José Dôres ◽  
Adriana Catarino ◽  
...  

Irrigation-induced or secondary salinization can occur when salts are introduced by irrigation water and accumulate within the root zone due to insufficient leaching. Mediterranean regions are especially susceptible, given the predominant climate and the expanding of irrigation areas. In this study, two indices to assess the risk of salinization (RSA) and sodification (RSO), previously applied at a regional scale, were used in a hydro-agricultural area (AHA) in Southern Portugal, in ten crop fields. Information on climate, irrigation water quality, soil characteristics, and land use was obtained from large databases and from local data. The results revealed the feasibility of using the RSA and RSO indices both on large and smaller scales, seeing as most of the area in the monitored crop fields presented the same risk classes (62% in RSA and 78% in RSO). Deviations were due to the reduction in scores for drainage and, in the case of RSO, the assigned irrigation method based on the land occupation class. Considering that different spatial scales of risk assessment are associated with different objectives and management options, a risk management framework was outlined following a multi-scale perspective for mitigation actions in salt-sensitive areas, ranging from territorial planning to the adoption of on-farm practices that can contribute to the sustainability of irrigated agriculture.


Author(s):  
A. Martyn ◽  
◽  
I. Kolhanova ◽  

Proposed scientific and methodological approaches to the development of working projects of land management regarding the implementation of measures for land reclamation, removal and transfer of the fertile soil layer, conservation of degraded and unproductive lands, improvement of agricultural and forestry lands, protection of lands from erosion, flooding, waterlogging, secondary salinization, desiccation, landslides, compaction, acidification, pollution by industrial and other wastes, radioactive and chemical substances, the structure and content of such projects has been developed. A complex of qualitative and quantitative indicators, parameters, regulating the development of working projects of land management, taking into account environmental, economic, social, natural-climatic and other conditions is proposed.


Soil Systems ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 58
Author(s):  
Sarah A. Helalia ◽  
Ray G. Anderson ◽  
Todd H. Skaggs ◽  
Jirka Šimůnek

California is increasingly experiencing drought conditions that restrict irrigation deliveries to perennial nut crops such as almonds and pistachios. During drought, poorer quality groundwater is often used to maintain these crops, but this use often results in secondary salinization that requires skilled management. Process-based models can help improve management guidelines under these challenging circumstances. The main objective of this work was to assess seasonal soil salinity and root water uptake as a function of irrigation water salinity and annual rain amounts. The manuscript presents a comparison of three-year experimental and numerically simulated root zone salinities in and below the root zone of almond and pistachio drip-irrigated orchards at multiple locations in the San Joaquin Valley (SJV), California, with different meteorological characteristics. The HYDRUS-1D numerical model was calibrated and validated using field measurements of soil water contents and soil solute bulk electrical conductivities at four root zone depths and measured soil hydraulic conductivities. The remaining soil hydraulic parameters were estimated inversely. Observations and simulations showed that the effects of rain on root zone salinity were higher in fields with initially low salinities than in fields with high salinities. The maximum reduction in simulated root water uptake (7%) occurred in response to initially high soil salinity conditions and saline irrigation water. The minimum reduction in simulated water uptake (2.5%) occurred in response to initially low soil salinity conditions and a wet rain year. Simulated water uptake reductions and leaching fractions varied at early and late times of the growing season, depending on irrigation water salinity. Root water uptake reduction was highly correlated with the cumulative effects of using saline waters in prior years, more than salt leaching during a particular season, even when rain was sufficient to leach salts during a wet year.


2021 ◽  
pp. 199-206
Author(s):  
Arzu Rivera Garcia ◽  
Géza Tuba ◽  
Györgyi Kovács ◽  
Lúcia Sinka ◽  
József Zsembeli

The effect of irrigation with saline water (above 500 mg L-1) is considered a problem of small-scale farmers growing vegetable crops with high water demand in the hobby gardens characteristic of the Hungarian Great Plain. In order to simulate the circumstances of such hobby garden, we set up an experiment including five simple drainage lysimeters irrigated with saline water in the Research Institute of Karcag IAREF UD in 2019. We regularly measured the electric conductivity (EC) of the soil referring to its salt content and the soil moisture content with mobile sensors. Before and after the irrigation season, soil samples from the upper soil layer (0-0.6 m) were taken for laboratory analysis and the soil salt balance (SB) was calculated. The actual salt balance (SBact) was calculated of the upper soil layer (0-0.6 m) based on the salt content of the obtained soil samples. The theoretical salt balance (SBth) was calculated by the total soluble salt content of the irrigation water and leachates. During the irrigation season, we experienced fluctuating EC in the topsoil in close correlation with the soil moisture content. Based on the performed in-situ EC measurements, salts were leached from the upper soil layer resulting in a negative SB. Combining SBact and SBth of the soil columns of the lysimeters, we estimated the SB of the deeper (0.6-1.0 m) soil layer. We quantified 12% increase of the initial salt mass due to accumulation. We consider this methodology to be suitable for deeper understanding secondary salinization, which can contribute to mitigating its harmful effect. By repeating our measurements, we expect similar results proving that saline irrigation waters gained from the aquifers through drilled wells in Karcag are potentially suitable for irrigation if proper irrigation and soil management are applied.  


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 736
Author(s):  
Mingze Zhang ◽  
Zhenming Yu ◽  
Danqi Zeng ◽  
Can Si ◽  
Conghui Zhao ◽  
...  

Dendrobium officinale Kimura et Migo is a precious traditional Chinese medicine. Despite D. officinale displaying a good salt-tolerance level, the yield and growth of D. officinale were impaired drastically by the increasing soil secondary salinization. The molecular mechanisms of D. officinale plants’ adaptation to salt stress are not well documented. Therefore, in the present study, D. officinale plants were treated with 250 mM NaCl. Transcriptome analysis showed that salt stress significantly altered various metabolic pathways, including phenylalanine metabolism, flavonoid biosynthesis, and α-linolenic acid metabolism, and significantly upregulated the mRNA expression levels of DoAOC, DoAOS, DoLOX2S, DoMFP, and DoOPR involved in the jasmonic acid (JA) biosynthesis pathway, as well as rutin synthesis genes involved in the flavonoid synthesis pathway. In addition, metabolomics analysis showed that salt stress induced the accumulation of some compounds in D. officinale leaves, especially flavonoids, sugars, and alkaloids, which may play an important role in salt-stress responses of leaf tissues from D. officinale. Moreover, salt stress could trigger JA biosynthesis, and JA may act as a signal molecule that promotes flavonoid biosynthesis in D. officinale leaves. To sum up, D. officinale plants adapted to salt stress by enhancing the biosynthesis of secondary metabolites.


2021 ◽  
Author(s):  
Suriya Torayeva

This article examines the current state of water and land resources in Uzbekistan. Since the agricultural sector in Uzbekistan occupies a significant share of the national and gross domestic product value, the quality of these resources is especially important for our republic. The main problem in obtaining the high- quality agricultural products in the region is the lack of water, salinization and soil erosion, as well as their secondary salinization, which is amplified due to climate change in this region. Studies show that this affects the productivity of an agricultural products. Taking this into account we understand the necessity of reduction of the harvesting of cotton and rice for less moisture consumed fruit and vegetable products. To achieve this expected results in the management of water and land resources, it is necessary to use the international experience of other countries, applying innovative water-saving technologies in the system of irrigation of land resources incorporating the problem of climate change.


2021 ◽  
Vol 13 (8) ◽  
pp. 4159
Author(s):  
Li Zhao ◽  
Tong Heng ◽  
Lili Yang ◽  
Xuan Xu ◽  
Yue Feng

Water scarcity and imbalances in irrigation and drainage are the main factors leading to soil salinization in arid areas. There is a recognized need for effective drainage measures to prevent and improve saline−alkali land. The principal objective of this project was to investigate the effects of drainage measures on soil desalination and farmland drainage in the process of improving saline–alkali soils; these measures included subsurface pipe drainage (SPD) and open ditch drainage (ODD). The results of the tests, conducted over two years, revealed that the soil desalination rate in the SPD test area was between 25.8% and 35.2%, the cotton emergence rate was 36.7%, and a 3.8 t hm−2 seed cotton yield could be obtained. The soil electrolytic conductivity (EC) decreased step by step over time, and the average annual decrease reached 10 dS m−1. The degree of soil salinization was reduced from a moderately saline soil level (8−15 dS m−1) to a weakly saline soil level (4–8 dS m−1). Thus, the phased goal of improving saline–alkali land was achieved. The soil desalination rate in the ODD test area was only 1/10 of the SPD area; high soil EC (9−12 dS m−1) and groundwater level (2–3 m) were the most limiting factors affecting cotton growth in the ODD test area. The current results show that the critical depth of groundwater level affecting farmland secondary salinization is 4 m. In order to improve the salt discharge standard, SPD technology should be used on the basis of ODD. For salt that has accumulated in the soil for a long time, the technical mode of drip irrigation and leaching, followed by SPD drainage, in combination with the current irrigation system can achieve the goal of sustainable agriculture development.


2021 ◽  
pp. 5-48
Author(s):  
E. I. Kravchenko ◽  
N. B. Khitrov ◽  
I. N. Gorokhova

The current state of salinity of irrigated soils in the area of the Sarpinskaya hollow in the Caspian lowland has been studied, using the example of the Duboovrazhny irrigated plot in the Volgograd region. At the peak of irrigation in the 85-90s of the last century, forage grasses were cultivated on the plot, irrigation was carried out by sprinkler irrigation, the groundwater level remained satisfactory, and there were no foci of secondary soil salinization. Currently, the plot is a private farm, where melons and vegetables are grown using drip irrigation, the groundwater level remains satisfactory with local formation of temporal water saturated layer. To identify the features of the process of salinization in irrigated soils in the Sarpinskaya hollow based on the materials of the field work performed in 2018–2019, a model of two-dimensional distribution (depth, distance) of the activity of ions (Ca2+, Cl–, Na+) over several profiles along weakly concave low ranges and elongated hollows between them and across relief wave was created. It was revealed that natural soil salinization predominates in the study plot mainly deeper than 1 m, and results from shallow bedding of Khvalynian chocolate clays at ranges. Solonchakous soils occur in elongated hollows between ranges where surface and subsurface runoff water is accumulated and natural drainability is low. Residual traces of soil secondary salinization expressed in the presence of calcium chloride in the soil solution were found. The maximum values of salts and exchangeable sodium are concentrated in the deeper part of the soil profile. 


Sign in / Sign up

Export Citation Format

Share Document