Structure analysis of allyl polymers by high resolution 1H and 13C NMR spectroscopy

1999 ◽  
Vol 35 (6) ◽  
pp. 997-1015 ◽  
Author(s):  
M.C.S Perera
Molbank ◽  
10.3390/m1140 ◽  
2020 ◽  
Vol 2020 (2) ◽  
pp. M1140
Author(s):  
Jack Bennett ◽  
Paul Murphy

(2S,3R,6R)-2-[(R)-1-Hydroxyallyl]-4,4-dimethoxy-6-methyltetrahydro-2H-pyran-3-ol was isolated in 18% after treating the glucose derived (5R,6S,7R)-5,6,7-tris[(triethylsilyl)oxy]nona-1,8-dien-4-one with (1S)-(+)-10-camphorsulfonic acid (CSA). The one-pot formation of the title compound involved triethylsilyl (TES) removal, alkene isomerization, intramolecular conjugate addition and ketal formation. The compound was characterized by 1H and 13C NMR spectroscopy, ESI mass spectrometry and IR spectroscopy. NMR spectroscopy was used to establish the product structure, including the conformation of its tetrahydropyran ring.


1995 ◽  
Vol 28 (19) ◽  
pp. 6677-6679 ◽  
Author(s):  
Masatoshi Kobayashi ◽  
Isao Ando ◽  
Takahiro Ishii ◽  
Shigetoshi Amiya

1999 ◽  
Vol 72 (5) ◽  
pp. 844-853 ◽  
Author(s):  
Seiichi Kawahara ◽  
Saori Bushimata ◽  
Takashi Sugiyama ◽  
Chihiro Hashimoto ◽  
Yasuyuki Tanaka

Abstract A novel analytical method using high resolution 13C-NMR spectroscopy to study polymer latex, which is a heterogeneous system comprising polymer dispersoid and water, is described. The appropriate concentrations of surfactant and dried rubber content of a polybutadiene latex, which give the best spectrum, were found to be 1 w/v % and 10%, respectively. The half-widths of resonance peaks for the latex sample were almost identical to the half-widths obtained in solution, which were about one-third the width of those obtained using a solid sample of either a crosslinked or soluble polybutadiene. Nevertheless, the signal to noise ratio for the latex sample was slightly smaller than that for the solution sample. The values of spin-lattice relaxation time, T1, for the latex sample were similar to those for the solid sample. These demonstrate that the latex state C-NMR spectroscopy will be a powerful technique for structural characterization of crosslinked gels in the dispersoid because it gives a high resolution spectrum comparable to solution state spectroscopy, showing short T1 values corresponding to those for solid state C-NMR spectroscopy. High resolution latex state 13C-NMR spectroscopy was used to determine the concentrations of the various isomers of the polybutadiene in the dispersoid.


Sign in / Sign up

Export Citation Format

Share Document