scholarly journals A directional electron transfer regulator based on heme-chain architecture in the small tetraheme cytochrome c from Shewanella oneidensis

FEBS Letters ◽  
2002 ◽  
Vol 532 (3) ◽  
pp. 333-337 ◽  
Author(s):  
Erisa Harada ◽  
Jiro Kumagai ◽  
Kiyoshi Ozawa ◽  
Shinichiro Imabayashi ◽  
Alexandre S Tsapin ◽  
...  
2001 ◽  
Vol 67 (7) ◽  
pp. 3236-3244 ◽  
Author(s):  
A. I. Tsapin ◽  
I. Vandenberghe ◽  
K. H. Nealson ◽  
J. H. Scott ◽  
T. E. Meyer ◽  
...  

ABSTRACT Two abundant, low-redox-potential cytochromesc were purified from the facultative anaerobeShewanella oneidensis strain MR1 grown anaerobically with fumarate. The small cytochrome was completely sequenced, and the genes coding for both proteins were cloned and sequenced. The small cytochrome c contains 91 residues and four heme binding sites. It is most similar to the cytochromes c fromShewanella frigidimarina (formerly Shewanella putrefaciens) NCIMB400 and the unclassified bacterial strain H1R (64 and 55% identity, respectively). The amount of the small tetraheme cytochrome is regulated by anaerobiosis, but not by fumarate. The larger of the two low-potential cytochromes contains tetraheme and flavin domains and is regulated by anaerobiosis and by fumarate and thus most nearly corresponds to the flavocytochromec-fumarate reductase previously characterized fromS. frigidimarina to which it is 59% identical. However, the genetic context of the cytochrome genes is not the same for the twoShewanella species, and they are not located in multicistronic operons. The small cytochrome c and the cytochrome domain of the flavocytochrome c are also homologous, showing 34% identity. Structural comparison shows that theShewanella tetraheme cytochromes are not related to theDesulfovibrio cytochromes c 3but define a new folding motif for small multiheme cytochromesc.


2018 ◽  
Vol 293 (21) ◽  
pp. 8103-8112 ◽  
Author(s):  
Marcus J. Edwards ◽  
Gaye F. White ◽  
Colin W. Lockwood ◽  
Matthew C. Lawes ◽  
Anne Martel ◽  
...  

Many subsurface microorganisms couple their metabolism to the reduction or oxidation of extracellular substrates. For example, anaerobic mineral-respiring bacteria can use external metal oxides as terminal electron acceptors during respiration. Porin–cytochrome complexes facilitate the movement of electrons generated through intracellular catabolic processes across the bacterial outer membrane to these terminal electron acceptors. In the mineral-reducing model bacterium Shewanella oneidensis MR-1, this complex is composed of two decaheme cytochromes (MtrA and MtrC) and an outer-membrane β-barrel (MtrB). However, the structures and mechanisms by which porin–cytochrome complexes transfer electrons are unknown. Here, we used small-angle neutron scattering (SANS) to study the molecular structure of the transmembrane complexes MtrAB and MtrCAB. Ab initio modeling of the scattering data yielded a molecular envelope with dimensions of ∼105 × 60 × 35 Å for MtrAB and ∼170 × 60 × 45 Å for MtrCAB. The shapes of these molecular envelopes suggested that MtrC interacts with the surface of MtrAB, extending ∼70 Å from the membrane surface and allowing the terminal hemes to interact with both MtrAB and an extracellular acceptor. The data also reveal that MtrA fully extends through the length of MtrB, with ∼30 Å being exposed into the periplasm. Proteoliposome models containing membrane-associated MtrCAB and internalized small tetraheme cytochrome (STC) indicate that MtrCAB could reduce Fe(III) citrate with STC as an electron donor, disclosing a direct interaction between MtrCAB and STC. Taken together, both structural and proteoliposome experiments support porin–cytochrome–mediated electron transfer via periplasmic cytochromes such as STC.


Sign in / Sign up

Export Citation Format

Share Document