scholarly journals Extracellular K+ and Ba2+ mediate voltage-dependent inactivation of the outward-rectifying K+ channel encoded by the yeast gene TOK1

FEBS Letters ◽  
1997 ◽  
Vol 405 (3) ◽  
pp. 337-344 ◽  
Author(s):  
Paola Vergani ◽  
Thomas Miosga ◽  
Simon M. Jarvis ◽  
Michael R. Blatt
1997 ◽  
Vol 272 (5) ◽  
pp. C1525-C1531 ◽  
Author(s):  
E. Romero ◽  
R. Sullivan

Megakaryocytes isolated from rat bone marrow express a voltage-dependent, outward K+ current with complex kinetics of activation and inactivation. We found that this current could be separated into at least two components based on differential responses to K+ channel blockers. One component, which exhibited features of the "transient" or "A-type" K+ current of excitable cells, was more strongly blocked by 4-aminopyridine (4-AP) than by tetrabutylammonium (TBA). This current, which we designated as "4-AP-sensitive" current, activated rapidly at potentials more positive than -40 mV and subsequently underwent rapid voltage-dependent inactivation. A separate current that activated slowly was blocked much more effectively by TBA than by 4-AP. This "TBA-sensitive" component, which resembled a typical delayed rectifier current, was much more resistant to voltage-dependent inactivation. The relative contribution of each of these components varied from cell to cell. The effect of charybdotoxin was similar to that of 4-AP. Our data indicate that the voltage-dependent K+ current of resting megakaryocytes is more complex than heretofore believed and support the emerging concept that megakaryocytes possess intricate electrophysiological properties.


2010 ◽  
Vol 136 (5) ◽  
pp. 569-579 ◽  
Author(s):  
Andrew S. Thomson ◽  
Brad S. Rothberg

Voltage-dependent K+ channels can undergo a gating process known as C-type inactivation, which involves entry into a nonconducting state through conformational changes near the channel’s selectivity filter. C-type inactivation may involve movements of transmembrane voltage sensor domains, although the mechanisms underlying this form of inactivation may be heterogeneous and are often unclear. Here, we report on a form of voltage-dependent inactivation gating observed in MthK, a prokaryotic K+ channel that lacks a canonical voltage sensor and may thus provide a reduced system to inform on mechanism. In single-channel recordings, we observe that Po decreases with depolarization, with a half-maximal voltage of 96 ± 3 mV. This gating is kinetically distinct from blockade by internal Ca2+ or Ba2+, suggesting that it may arise from an intrinsic inactivation mechanism. Inactivation gating was shifted toward more positive voltages by increasing external [K+] (47 mV per 10-fold increase in [K+]), suggesting that K+ binding at the extracellular side of the channel stabilizes the open-conductive state. The open-conductive state was stabilized by other external cations, and selectivity of the stabilizing site followed the sequence: K+ ≈ Rb+ > Cs+ > Na+ > Li+ ≈ NMG+. Selectivity of the stabilizing site is weaker than that of sites that determine permeability of these ions, suggesting that the site may lie toward the external end of the MthK selectivity filter. We could describe MthK gating over a wide range of positive voltages and external [K+] using kinetic schemes in which the open-conductive state is stabilized by K+ binding to a site that is not deep within the electric field, with the voltage dependence of inactivation arising from both voltage-dependent K+ dissociation and transitions between nonconducting (inactivated) states. These results provide a quantitative working hypothesis for voltage-dependent, K+-sensitive inactivation gating, a property that may be common to other K+ channels.


1981 ◽  
Vol 78 (1) ◽  
pp. 43-61 ◽  
Author(s):  
I Inoue

A spike that is the result of calcium permeability through potassium channels was separated from the action potential is squid giant axons internally perfused with a 30 mM NaF solution and bathed in a 100 mM CaCl2 solution by blocking sodium channels with tetrodotoxin. Currents through potassium channels were studied under voltage clamp. The records showed a clear voltage-dependent inactivation of the currents. The inactivation was composed of at least two components; one relatively fast, having a time constant of 20--30 ms, and the other very slow, having a time constant of 5--10 s. Voltage clamp was carried out with a variety of salt compositions in both the internal and external solutions. A similar voltage-dependent inactivation, also composed of the two components, was recognized in all the current through potassium channels. Although the direction and intensity of current strongly depended on the salt composition of the solutions, the time-courses of these currents at corresponding voltages were very similar. These results strongly suggest that the inactivation of the currents in attributable to an essential, dynamic property of potassium channels themselves. Thus, the generation of a potassium-channel spike can be understood as an event that occurs when the equilibrium potential across the potassium channel becomes positive.


2005 ◽  
Vol 103 (6) ◽  
pp. 1156-1166 ◽  
Author(s):  
Kevin J. Gingrich ◽  
Son Tran ◽  
Igor M. Nikonorov ◽  
Thomas J. Blanck

Background Volatile anesthetics depress cardiac contractility, which involves inhibition of cardiac L-type calcium channels. To explore the role of voltage-dependent inactivation, the authors analyzed halothane effects on recombinant cardiac L-type calcium channels (alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1), which differ by the alpha2/delta1 subunit and consequently voltage-dependent inactivation. Methods HEK-293 cells were transiently cotransfected with complementary DNAs encoding alpha1C tagged with green fluorescent protein and beta2a, with and without alpha2/delta1. Halothane effects on macroscopic barium currents were recorded using patch clamp methodology from cells expressing alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1 as identified by fluorescence microscopy. Results Halothane inhibited peak current (I(peak)) and enhanced apparent inactivation (reported by end pulse current amplitude of 300-ms depolarizations [I300]) in a concentration-dependent manner in both channel types. alpha2/delta1 coexpression shifted relations leftward as reported by the 50% inhibitory concentration of I(peak) and I300/I(peak)for alpha1Cbeta2a (1.8 and 14.5 mm, respectively) and alpha1Cbeta2aalpha2/delta1 (0.74 and 1.36 mm, respectively). Halothane reduced transmembrane charge transfer primarily through I(peak) depression and not by enhancement of macroscopic inactivation for both channels. Conclusions The results indicate that phenotypic features arising from alpha2/delta1 coexpression play a key role in halothane inhibition of cardiac L-type calcium channels. These features included marked effects on I(peak) inhibition, which is the principal determinant of charge transfer reductions. I(peak) depression arises primarily from transitions to nonactivatable states at resting membrane potentials. The findings point to the importance of halothane interactions with states present at resting membrane potential and discount the role of inactivation apparent in current time courses in determining transmembrane charge transfer.


Sign in / Sign up

Export Citation Format

Share Document