Modulation of voltage-dependent inactivation of the inwardly rectifying K+ channel by chloramine-T

1994 ◽  
Vol 258 (3) ◽  
pp. 281-284 ◽  
Author(s):  
Shin-ichi Koumi ◽  
Ryoichi Sato ◽  
Hirokazu Hayakawa
1997 ◽  
Vol 272 (5) ◽  
pp. C1525-C1531 ◽  
Author(s):  
E. Romero ◽  
R. Sullivan

Megakaryocytes isolated from rat bone marrow express a voltage-dependent, outward K+ current with complex kinetics of activation and inactivation. We found that this current could be separated into at least two components based on differential responses to K+ channel blockers. One component, which exhibited features of the "transient" or "A-type" K+ current of excitable cells, was more strongly blocked by 4-aminopyridine (4-AP) than by tetrabutylammonium (TBA). This current, which we designated as "4-AP-sensitive" current, activated rapidly at potentials more positive than -40 mV and subsequently underwent rapid voltage-dependent inactivation. A separate current that activated slowly was blocked much more effectively by TBA than by 4-AP. This "TBA-sensitive" component, which resembled a typical delayed rectifier current, was much more resistant to voltage-dependent inactivation. The relative contribution of each of these components varied from cell to cell. The effect of charybdotoxin was similar to that of 4-AP. Our data indicate that the voltage-dependent K+ current of resting megakaryocytes is more complex than heretofore believed and support the emerging concept that megakaryocytes possess intricate electrophysiological properties.


1995 ◽  
Vol 106 (1) ◽  
pp. 1-23 ◽  
Author(s):  
C A Doupnik ◽  
N F Lim ◽  
P Kofuji ◽  
N Davidson ◽  
H A Lester

The voltage-, time-, and K(+)-dependent properties of a G protein-activated inwardly rectifying K+ channel (GIRK1/KGA/Kir3.1) cloned from rat atrium were studied in Xenopus oocytes under two-electrode voltage clamp. During maintained G protein activation and in the presence of high external K+ (VK = 0 mV), voltage jumps from VK to negative membrane potentials activated inward GIRK1 K+ currents with three distinct time-resolved current components. GIRK1 current activation consisted of an instantaneous component that was followed by two components with time constants tau f approximately 50 ms and tau s approximately 400 ms. These activation time constants were weakly voltage dependent, increasing approximately twofold with maximal hyperpolarization from VK. Voltage-dependent GIRK1 availability, revealed by tail currents at -80 mV after long prepulses, was greatest at potentials negative to VK and declined to a plateau of approximately half the maximal level at positive voltages. Voltage-dependent GIRK1 availability shifted with VK and was half maximal at VK -20 mV; the equivalent gating charge was approximately 1.6 e-. The voltage-dependent gating parameters of GIRK1 did not significantly differ for G protein activation by three heterologously expressed signaling pathways: m2 muscarinic receptors, serotonin 1A receptors, or G protein beta 1 gamma 2 subunits. Voltage dependence was also unaffected by agonist concentration. These results indicate that the voltage-dependent gating properties of GIRK1 are not due to extrinsic factors such as agonist-receptor interactions and G protein-channel coupling, but instead are analogous to the intrinsic gating behaviors of other inwardly rectifying K+ channels.


1996 ◽  
Vol 76 (3) ◽  
pp. 1413-1422 ◽  
Author(s):  
Y. J. Lin ◽  
G. J. Greif ◽  
J. E. Freedman

1. In cell-attached patch-clamp recordings from freshly dissociated rat caudate-putamen neurons, an 85-pS inwardly rectifying K+ channel, which was previously found to be modulated by D2-like dopamine receptors, was blocked by externally applied BaCl2 or CsCl. 2. At concentrations between 100 and 500 microM, Ba2+ blockade was voltage dependent, with a greater block at hyperpolarized voltages, in a manner consistent with blockade of the channel pore. Single-channel currents were flickery, with intervening periods of more complete blockade, and block appeared to be time dependent, with an estimated electrical distance of 0.24 and an apparent dissociation constant of 205 microM at 0 mV. 3. At concentrations between 1 and 3 mM, Cs+ blockade was similarly voltage dependent, but without periods of longer blockade, with an electrical distance of 0.81 and an apparent dissociation constant of 625 microM at 0 mV. Cs+ could also permeate this channel at voltages near the K+ reversal potential. The current-voltage relationship displayed an anomalous negative slope conductance, in a manner inconsistent with a single-ion pore. 4. Smaller-conductance, dopamine-insensitive channels were blocked more potently by both Ba2+ and Cs+ than was the 85-pS channel, reflecting differences between inwardly rectifying K+ channels mediating resting conductance and those mediating dopamine receptor responses in striatal neurons.


FEBS Letters ◽  
1997 ◽  
Vol 405 (3) ◽  
pp. 337-344 ◽  
Author(s):  
Paola Vergani ◽  
Thomas Miosga ◽  
Simon M. Jarvis ◽  
Michael R. Blatt

Sign in / Sign up

Export Citation Format

Share Document