scholarly journals Abscisic acid maintains S-type anion channel activity in ATP-depleted Vicia faba guard cells

FEBS Letters ◽  
1998 ◽  
Vol 428 (3) ◽  
pp. 177-182 ◽  
Author(s):  
Martin Schwarz ◽  
Julian I Schroeder
1982 ◽  
Vol 69 (5) ◽  
pp. 1140-1144 ◽  
Author(s):  
Teruo Ogawa ◽  
David Grantz ◽  
John Boyer ◽  
Govindjee

1997 ◽  
Vol 12 (1) ◽  
pp. 203-213 ◽  
Author(s):  
Alexander Grabov ◽  
Jeffrey Leung ◽  
Jerome Giraudat ◽  
Michael R. Blatt

1985 ◽  
Vol 78 (1) ◽  
pp. 51-56 ◽  
Author(s):  
David A. Grantz ◽  
Tuan-Hua David Ho ◽  
Scott J. Uknes ◽  
John M. Cheeseman ◽  
John S. Boyer

2021 ◽  
Author(s):  
Li Qin ◽  
Ling-hui Tang ◽  
Jia-shu Xu ◽  
Xian-hui Zhang ◽  
Yun Zhu ◽  
...  

SUMMARYThe rapid (R)-type anion channel plays a central role in controlling stomatal closure in plant guard cells, thus regulating the exchange of water and photosynthetic gas (CO2) in response to environmental stimuli. The activity of the R- type anion channel is regulated by malate. However, the molecular basis of the R-type anion channel activity remains elusive. Here, we describe the first cryo-EM structure of the R-type anion channel QUAC1 at 3.5 Å resolution in the presence of malate. The structure reveals that the QUAC1 is a symmetrical dimer, forming a single electropositive T-shaped pore for passing anions across the membrane. The transmembrane and cytoplasmic domains are assembled into a twisted bi-layer architecture, with the associated dimeric interfaces nearly perpendicular. Our structural and functional analyses reveal that QUAC1 functions as an inward rectifying anion channel and suggests a mechanism for malate-mediated channel activation. Altogether, our study uncovers the molecular basis for a novel class of anion channels and provides insights into the gating and modulation of the R-type anion channel.


The plant growth regulator abscisic acid triggers closing of stomata in the leaf epidermis in response to water stress. Recent tracer flux studies, patch-clamp studies, fluorometric Ca 2+ measurements and microelectrode experiments have provided insight into primary transduction mechanisms by which abscisic acid causes stomatal closing. Data show that abscisic acid activates non-selective Ca 2+ permeable ion channels in the plasma membrane of guard cells. The resulting elevation in the free Ca 2+ concentration in the cytosol of guard cells, and the resulting membrane depolarization as well as other unidentified Ca 2+ independent mechanisms are suggested to contribute to activation of voltage- and second messenger-dependent anion channels and outward rectifying K + channels. Recent data suggest the involvement of two types of anion channels in the regulation of stomatal movements, which provide highly distinct mechanisms for anion efflux and depolarization. A novely characterized ‘S-type’ anion channel is likely to provide a key mechanism for long-term depolarization and sustained anion efflux during closing of stomata. Patch-clamp studies have revealed the presence of a network of K + , anion and non-selective Ca 2+ -permeable channels in the plasma membrane of a higher plant cell. The integrated control of these guard cell ion channels by abscisic acid can provide control over K + and anion efflux required for stomatal closing.


1996 ◽  
Vol 37 (5) ◽  
pp. 697-701 ◽  
Author(s):  
C.-J. Jiang ◽  
N. Nakajima ◽  
N. Kondo

2018 ◽  
Vol 115 (44) ◽  
pp. 11129-11137 ◽  
Author(s):  
Jingbo Zhang ◽  
Nuo Wang ◽  
Yinglong Miao ◽  
Felix Hauser ◽  
J. Andrew McCammon ◽  
...  

Increases in CO2 concentration in plant leaves due to respiration in the dark and the continuing atmospheric [CO2] rise cause closing of stomatal pores, thus affecting plant–water relations globally. However, the underlying CO2/bicarbonate (CO2/HCO3−) sensing mechanisms remain unknown. [CO2] elevation in leaves triggers stomatal closure by anion efflux mediated via the SLAC1 anion channel localized in the plasma membrane of guard cells. Previous reconstitution analysis has suggested that intracellular bicarbonate ions might directly up-regulate SLAC1 channel activity. However, whether such a CO2/HCO3− regulation of SLAC1 is relevant for CO2 control of stomatal movements in planta remains unknown. Here, we computationally probe for candidate bicarbonate-interacting sites within the SLAC1 anion channel via long-timescale Gaussian accelerated molecular dynamics (GaMD) simulations. Mutations of two putative bicarbonate-interacting residues, R256 and R321, impaired the enhancement of the SLAC1 anion channel activity by CO2/HCO3− in Xenopus oocytes. Mutations of the neighboring charged amino acid K255 and residue R432 and the predicted gate residue F450 did not affect HCO3− regulation of SLAC1. Notably, gas-exchange experiments with slac1-transformed plants expressing mutated SLAC1 proteins revealed that the SLAC1 residue R256 is required for CO2 regulation of stomatal movements in planta, but not for abscisic acid (ABA)-induced stomatal closing. Patch clamp analyses of guard cells show that activation of S-type anion channels by CO2/HCO3−, but not by ABA, was impaired, indicating the relevance of R256 for CO2 signal transduction. Together, these analyses suggest that the SLAC1 anion channel is one of the physiologically relevant CO2/HCO3− sensors in guard cells.


2000 ◽  
Vol 51 (349) ◽  
pp. 1479-1480
Author(s):  
Karthik Aghoram ◽  
William H. Outlaw ◽  
George W. Bates ◽  
John Cairney ◽  
Agustin O. Pineda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document