Altered luteinizing hormone pulse frequency in early follicular phase of the menstrual cycle with luteal phase defect patients in women**Supported in part by National Institutes of Health General Clinical Research Center grant RR-00051, Bethesda, Maryland.

1993 ◽  
Vol 60 (5) ◽  
pp. 800-805 ◽  
Author(s):  
Bo Y. Suh ◽  
George Betz
1982 ◽  
Vol 99 (4) ◽  
pp. 481-486 ◽  
Author(s):  
S. Baumgarten ◽  
A. Römmler ◽  
K.G. Post ◽  
J. Hammerstein

Abstract. The objective of this study was to re-investigate the capacity of pituitary prolactin (Prl) and thyrotrophin (TSH) secretion throughout the normal menstrual cycle to respond to repeated thyrotrophin releasing hormone (TRH) stimulation analogous to the double luteinizing hormone-releasing hormone (LRH) stimulation test. This test has been shown to be a sensitive parameter for oestrogenic effects on the gonadotrophs. In addition, the volunteers were selected carefully on the basis of ovulatory cycles and otherwise normal endocrine function. In 9 women a combined LRH/TRH double stimulation test was performed during the early follicular, periovulatory and mid-luteal phases. TRH (200 μg) and LRH (25 μg) each were given iv twice, 2 h apart. Basal and LRH stimulated luteinizing hormone (LH) and follicle stimulating hormone (FSH) were found to follow characteristic cyclic response patterns. The LH responses after both LRH stimulations were greatest in the periovulatory phase; Δ1 and Δ2 were higher in the mid-luteal phase than in the follicular phase. Maximum FSH response to LRH was found during the periovulatory phase, but the FSH response in the early follicular phase was greater than that found in the mid-luteal phase. In contrast, basal and TRH stimulated serum concentrations of TSH and Prl remained constant throughout the cycle. The gonadotrophin ratios Δ2:Δ1 were generally greater than 1. They increased from 1.4 in the early follicular phase to 3.0 in the late follicular phase, concomitant with the rise in oestrogens. The Δ2: Δ1 ratios for TSH and Prl were less than 1, ranging from 0.66 to 0.98 for TSH and from 0.26 to 0.99 for Prl. They did not show any cyclic changes. Thus, this study shows that after LRH/TRH double stimulation, the gonadotrophin but not the Prl and TSH responses vary with the physiological changes in oestrogens during the menstrual cycle. The supposed mechanism of oestrogen effects on pituitary hormone secretion and their possible clinical significance are discussed.


2018 ◽  
Author(s):  
Rebecca Pierson ◽  
Kelly Pagidas

A normal menstrual cycle is the end result of a sequence of purposeful and coordinated events that occur from intact hypothalamic-pituitary-ovarian and uterine axes. The menstrual cycle is under hormonal control in the reproductively active female and is functionally divided into two phases: the proliferative or follicular phase and the secretory or luteal phase. This tight hormonal control is orchestrated by a series of negative and positive endocrine feedback loops that alter the frequency of the pulsatile secretion of gonadotropin-releasing hormone (GnRH), the pituitary response to GnRH, and the relative secretion of luteinizing hormone and follicle-stimulating hormone from the pituitary gonadotrope with subsequent direct effects on the ovary to produce a series of sex steroids and peptides that aid in the generation of a single mature oocyte and the preparation of a receptive endometrium for implantation to ensue. Any derailment along this programmed pathway can lead to an abnormal menstrual cycle with subsequent impact on the ability to conceive and maintain a pregnancy. This review contains 7 figures and 26 references Key words: follicle-stimulating hormone, follicular phase, gonadotropin-releasing hormone, luteal phase, luteinizing hormone, menstrual cycle, ovulation, progesterone, proliferative phase, secretory phase


1975 ◽  
Vol 79 (4) ◽  
pp. 625-634 ◽  
Author(s):  
Elwyn M. Grimes ◽  
Irwin E. Thompson ◽  
Melvin L. Taymor

ABSTRACT Thirty-one ovulatory women between 20 and 33 years of age were given 150 μg of synthetic LH-RH during different phases of the menstrual cycle. Five patients were studied during the early follicular phase (days 4–7); 10 patients during the late follicular phase (days 9–12); 6 patients during the "LH Surge"; 5 patients during the early luteal phase (days 14–16); 3 patients during mid-luteal phase (days 17–21); and 2 patients during late luteal phase (days 22–27). Oestrogen, progesterone, FSH and LH levels were determined from 30 min prior to LH-RH administration to 90 min thereafter in all cases. LH response to LH-RH increased progressively during the follicular phase. Enhanced pituitary responsiveness to LH-RH occurred at mid-cycle for both LH and FSH and maximum LH responses occurred during the "LH Surge" and early luteal phase. LH responses during the mid and late luteal phases were similar to late follicular phase responses. There were no significant differences between FSH responses during the early follicular, late follicular, mid-luteal and late luteal phases. Maximum pituitary responsiveness appears to occur in a gonadal steroid milieu of high oestrogen levels in association with rising but low progesterone levels. Progesterone or a crucial oestrogen: progesterone ratio may in fact potentiate pituitary release of LH during the early stages of corpus luteum formation. Pituitary responsiveness to LH-RH correlates positively with basal LH and oestrogen levels during the menstrual cycle and with the oestrogen:progesterone ratio during the luteal phase.


1979 ◽  
Vol 91 (1) ◽  
pp. 49-58 ◽  
Author(s):  
N. Goncharov ◽  
A. V. Antonichev ◽  
V. M. Gorluschkin ◽  
L. Chachundocova ◽  
D. M. Robertson ◽  
...  

ABSTRACT The peripheral plasma levels of luteinizing hormone (LH) as measured by an in vitro bioassay method were determined in daily plasma samples collected throughout one menstrual cycle in 8 normally menstruating baboons (Papio hamadryas). In addition LH was measured in plasma at three hourly intervals throughout the day in the follicular, peri-ovulatory and luteal phases of the cycle in 7, 3 and 6 animals respectively. The plasma levels of progesterone and oestradiol were also determined in the same samples throughout the menstrual cycle and during the period of the midcycle LH surge. The circulating LH profile measured throughout the cycle was characterized by a sharp mid-cycle surge (completed within one day) which was followed by a series of LH surges of varying intensity during the luteal phase of the cycle. The initial surge was considered to be pre-ovulatory as indicated by its relationship to the peak of plasma oestradiol and to the first significant increase in the levels of plasma progesterone above values found earlier in the follicular phase. A circadian rhythm of LH was observed during the luteal phase of the cycle; a 3 fold rise in LH was noted during the hours 15.00 to 24.00. No differences were observed throughout the day in the follicular phase of the cycle. The LH profile in three animals studied during the mid-cycle LH surge showed pronounced circadian changes with a major peak at 24.00 h. Plasma progesterone levels during this period rose sharply to values normally found in the mid-luteal phase of the cycle. A comparison of plasma levels of biologically active LH during the menstrual cycle of the baboon with those found in normally menstruating women reveals that in the baboon the LH peak is of much shorter duration and the levels in the follicular and peri-menstrual phases are significantly lower than in the human.


2014 ◽  
Vol 306 (11) ◽  
pp. E1292-E1304 ◽  
Author(s):  
W. K. McGee ◽  
C. V. Bishop ◽  
C. R. Pohl ◽  
R. J. Chang ◽  
J. C. Marshall ◽  
...  

Many patients with hyperandrogenemia are overweight or obese, which exacerbates morbidities associated with polycystic ovary syndrome (PCOS). To examine the ability of testosterone (T) to generate PCOS-like symptoms, monkeys received T or cholesterol (control) implants ( n = 6/group) beginning prepubertally. As previously reported, T-treated animals had increased neuroendocrine drive to the reproductive axis [increased luteinizing hormone (LH) pulse frequency] at 5 yr, without remarkable changes in ovarian or metabolic features. To examine the combined effects of T and obesity, at 5.5 yr (human equivalent age: 17 yr), monkeys were placed on a high-calorie, high-fat diet typical of Western cultures [Western style diet (WSD)], which increased body fat from <2% (pre-WSD) to 15–19% (14 mo WSD). By 6 mo on WSD, LH pulse frequency in the controls increased to that of T-treated animals, whereas LH pulse amplitude decreased in both groups and remained low. The numbers of antral follicles present during the early follicular phase increased in both groups on the WSD, but maximal follicular size decreased by 50%. During the late follicular phase, T-treated females had greater numbers of small antral follicles than controls. T-treated monkeys also had lower progesterone during the luteal phase of the menstrual cycle. Although fasting insulin did not vary between groups, T-treated animals had decreased insulin sensitivity after 1 yr on WSD. Thus, while WSD consumption alone led to some features characteristic of PCOS, T + WSD caused a more severe phenotype with regard to insulin insensitivity, increased numbers of antral follicles at midcycle, and decreased circulating luteal phase progesterone levels.


CNS Spectrums ◽  
2003 ◽  
Vol 8 (11) ◽  
pp. 805-814 ◽  
Author(s):  
Natalie L. Rasgon ◽  
Lara Pumphrey ◽  
Paolo Prolo ◽  
Shana Elman ◽  
Andre B. Negrao ◽  
...  

ABSTRACTBackground:The aim of this study was to develop a mathematical model of the hypothalamo-pituitary-gonadal axis that would reflect available data in humans.Methods:A model of hormonal relationships at the early follicular and midluteal phases of the human menstrual cycle is proposed.Findings:Two distinct temporal patterns of oscillatory behavior have been demonstrated for both pituitary and gonadal steroids in the early follicular phase: first, rapid oscillations in gonadotropin releasing hormone, follicle stimulating hormone, and luteinizing hormone (Q∼1 hour) that were an immediate consequence of the programmed equations. Second, there were slower, undulating, emergent rhythms in luteinizing hormone and follicle stimulating hormone, and also in estrogen, having oscillatory periods of 2–12 hours. There was also a longer-period (Q2–3 days) emergent rhythm in progesterone. In the mid-luteal phase, estrogen and progesterone rhythms were correlated, and all hormones showed an ∼6-hour periodicity.Conclusion:To our knowledge, the oscillatory behavior of peripheral sex steroids in the follicular phase has not been previously noted.


Sign in / Sign up

Export Citation Format

Share Document