Cytokine production in human intestinal mast cells triggered by Fc∈ receptor cross-linking is dependent on both protein kinase C and MAP kinase

2001 ◽  
Vol 120 (5) ◽  
pp. A497-A497
Author(s):  
A LORENTZ ◽  
I KLOPP ◽  
T GEBHARDT ◽  
M MANNS ◽  
S BISCHOFF
2001 ◽  
Vol 120 (5) ◽  
pp. A497
Author(s):  
Axel Lorentz ◽  
Ilka Klopp ◽  
Thomas Gebhardt ◽  
Michael P. Manns ◽  
Stephan C. Bischoff

2003 ◽  
Vol 71 (11) ◽  
pp. 6171-6177 ◽  
Author(s):  
Michael Stassen ◽  
Christian Müller ◽  
Christoph Richter ◽  
Christine Neudörfl ◽  
Lothar Hültner ◽  
...  

ABSTRACT Streptolysin O (SLO), a major virulence factor of pyogenic streptococci, binds to cholesterol in the membranes of eukaryotic cells and oligomerizes to form large transmembrane pores. While high toxin doses are rapidly cytocidal, low doses are tolerated because a limited number of lesions can be resealed. Here, we report that at sublethal doses, SLO activates primary murine bone marrow-derived mast cells to degranulate and to rapidly induce or enhance the production of several cytokine mRNAs, including tumor necrosis factor alpha (TNF-α). Mast cell-derived TNF-α plays an important protective role in murine models of acute inflammation, and the production of this cytokine was analyzed in more detail. Release of biologically active TNF-α peaked ∼4 h after stimulation with SLO. Production of TNF-α was blunted upon depletion of protein kinase C by pretreatment of the cells with phorbol-12 myristate-13 acetate. Transient permeabilization of mast cells with SLO also led to the activation of the stress-activated protein kinases p38 mitogen-activated protein (MAP) kinase and c-jun N-terminal kinase (JNK), and inhibition of p38 MAP kinase markedly reduced production of TNF-α. In contrast, secretion of preformed granule constituents triggered by membrane permeabilization was not dependent on p38 MAP kinase or on protein kinase C. Thus, transcriptional activation of mast cells following transient permeabilization might contribute to host defense against infections via the beneficial effects of TNF-α. However, hyperstimulation of mast cells might also lead to overproduction of TNF-α, which would then promote the development of toxic streptococcal syndromes.


1993 ◽  
Vol 13 (5) ◽  
pp. 3076-3083
Author(s):  
K Irie ◽  
M Takase ◽  
K S Lee ◽  
D E Levin ◽  
H Araki ◽  
...  

The PKC1 gene of Saccharomyces cerevisiae encodes a homolog of mammalian protein kinase C that is required for normal growth and division of yeast cells. We report here the isolation of the yeast MKK1 and MKK2 (for mitogen-activated protein [MAP] kinase-kinase) genes which, when overexpressed, suppress the cell lysis defect of a temperature-sensitive pkc1 mutant. The MKK genes encode protein kinases most similar to the STE7 product of S. cerevisiae, the byr1 product of Schizosaccharomyces pombe, and vertebrate MAP kinase-kinases. Deletion of either MKK gene alone did not cause any apparent phenotypic defects, but deletion of both MKK1 and MKK2 resulted in a temperature-sensitive cell lysis defect that was suppressed by osmotic stabilizers. This phenotypic defect is similar to that associated with deletion of the BCK1 gene, which is thought to function in the pathway mediated by PCK1. The BCK1 gene also encodes a predicted protein kinase. Overexpression of MKK1 suppressed the growth defect caused by deletion of BCK1, whereas an activated allele of BCK1 (BCK1-20) did not suppress the defect of the mkk1 mkk2 double disruption. Furthermore, overexpression of MPK1, which encodes a protein kinase closely related to vertebrate MAP kinases, suppressed the defect of the mkk1 mkk2 double mutant. These results suggest that MKK1 and MKK2 function in a signal transduction pathway involving the protein kinases encoded by PKC1, BCK1, and MPK1. Genetic epistasis experiments indicated that the site of action for MKK1 and MKK2 is between BCK1 and MPK1.


2001 ◽  
Vol 356 (1) ◽  
pp. 287-296 ◽  
Author(s):  
Jef A. PINXTEREN ◽  
Bastien D. GOMPERTS ◽  
Danise ROGERS ◽  
Scott E. PHILLIPS ◽  
Peter E. R. TATHAM ◽  
...  

Mast cells permeabilized by streptolysin O undergo exocytosis when stimulated with Ca2+ and guanosine 5′-[γ-thio]triphosphate but become progressively refractory to this stimulus if it is delayed. This run-down of responsiveness occurs over a period of 20–30min, during which the cells leak soluble and tethered proteins. We show here that withdrawal of ATP during the process of run-down is strongly inhibitory but that as little as 25μM ATP can extend responsiveness significantly; this effect is maximal at 50μM. When phosphatidylinositol transfer proteins (PITPs) are provided to cells at the time of permeabilization, run-down is retarded. We conclude that in the presence of ATP they convey substrates for phosphorylation that are essential for exocytosis and thus interact with the regulatory machinery. Furthermore, we show that PITPα and PITPβ have additive effects in this mechanism, suggesting that they are not functionally redundant. Alternatively, secretion from run-down cells can be inhibited by the aminoglycoside antibiotic neomycin, which is understood to bind to phosphoinositide headgroups, and by a PH (pleckstrin homology) domain polypeptide that binds phosphoinositides. The apparent displacement of neomycin by exogenous PITPs suggests that these proteins screen essential lipids. Secretion from run-down cells is also inhibited by 1-O-hexadecyl-2-O-methyl-rac-glycerol (AMG-C16), an inhibitor of protein kinase C. The lack of synergy between neomycin and AMG-C16 suggests that protein kinase C independently provides a second essential component through protein phosphorylation and that there are two independent phosphorylation pathways necessary for secretion competence.


1993 ◽  
Vol 289 (1) ◽  
pp. 283-287 ◽  
Author(s):  
L Pang ◽  
S J Decker ◽  
A R Saltiel

Both bombesin and epidermal growth factor (EGF) are potent mitogens in Swiss 3T3 cells that nonetheless have dissimilar receptor structures. To explore possible common intracellular events involved in the stimulation of cellular growth by these two peptides, we have evaluated the regulation of the mitogen-activated protein (MAP) kinase. Exposure of Swiss 3T3 cells to bombesin, EGF or the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) causes the rapid and transient stimulation of the enzyme activity. Pretreatment of cells with the protein kinase inhibitor H-7, or down-regulation of cellular protein kinase C by prolonged exposure to PMA, causes a decrease of over 90% in the activation of MAP kinase by bombesin. In contrast, these treatments have no effect on the stimulation of MAP kinase by EGF. The stimulation of MAP kinase activity by bombesin is dose-dependent, occurring over a narrow concentration range of the peptide. Both EGF and bombesin stimulate the phosphorylation of an immunoprecipitable MAP kinase protein migrating at 42 kDa on SDS/PAGE. Phosphoamino acid analysis of this phosphorylated protein reveals that EGF and bombesin stimulate phosphorylation on tyrosine, threonine and serine residues. Tyrosine phosphorylation of the enzyme, as evaluated by antiphosphotyrosine blotting of the immunoprecipitated protein, reveals that the time course of phosphorylation by both mitogens correlates with stimulation of enzyme activity. These results provide further evidence for the convergence of discrete pathways emanating from tyrosine kinase and G-protein-linked receptors in the regulation of MAP kinase.


Sign in / Sign up

Export Citation Format

Share Document