Mo1781 Crohn's Disease-Associated Adherent-Invasive Escherichia coli Induce Secretion of Exosomes With Pro-Inflammatory Activity by Intestinal Epithelial Cells

2015 ◽  
Vol 148 (4) ◽  
pp. S-710 ◽  
Author(s):  
Jessica Carriere ◽  
Alexis Bretin ◽  
Nicolas Barnich ◽  
Hang T. Nguyen
2007 ◽  
Vol 189 (13) ◽  
pp. 4860-4871 ◽  
Author(s):  
Marie-Agnès Bringer ◽  
Nathalie Rolhion ◽  
Anne-Lise Glasser ◽  
Arlette Darfeuille-Michaud

ABSTRACT Adherent-invasive Escherichia coli (AIEC) isolated from Crohn's disease patients is able to adhere to and invade intestinal epithelial cells and to replicate in mature phagolysosomes within macrophages. Here, we show that the dsbA gene, encoding a periplasmic oxidoreductase, was required for AIEC strain LF82 to adhere to intestinal epithelial cells and to survive within macrophages. The LF82-ΔdsbA mutant did not express flagella and, probably as a consequence of this, did not express type 1 pili. The role of DsbA in adhesion is restricted to the loss of flagella and type 1 pili, as forced contact between bacteria and cells and induced expression of type 1 pili restored the wild-type phenotype. In contrast, the dsbA gene is essential for AIEC LF82 bacteria to survive within macrophages, irrespective of the loss of flagella and type 1 pilus expression, and the survival ability of LF82-ΔdsbA was as low as that of the nonpathogenic E. coli K-12, which was efficiently killed by macrophages. We also provide evidence that the dsbA gene is needed for LF82 bacteria to grow and survive in an acidic and nutrient-poor medium that partly mimics the harsh environment of the phagocytic vacuole. In addition, under such stress conditions dsbA transcription is highly up-regulated. Finally, the CpxRA signaling pathway does not play a role in regulation of dsbA expression in AIEC LF82 bacteria under conditions similar to those of mature phagolysosomes.


2010 ◽  
Vol 192 (7) ◽  
pp. 1832-1843 ◽  
Author(s):  
Sylvie Miquel ◽  
Laurent Claret ◽  
Richard Bonnet ◽  
Imen Dorboz ◽  
Nicolas Barnich ◽  
...  

ABSTRACT The interaction of Crohn's disease (CD)-associated adherent-invasive Escherichia coli (AIEC) strain LF82 with intestinal epithelial cells depends on surface appendages, such as type 1 pili and flagella. Histone-like proteins operate as global regulators to control the expression of these virulence factors. We evaluated the role of histone-like proteins in AIEC reference strain LF82 during infection of intestinal epithelial cells, Intestine-407, and observed that the fis mRNA level was decreased. The role of Fis in AIEC LF82 was determined by studying the phenotype of an LF82 fis::Km mutant. This was the first mutant of strain LF82 that has been described thus far that is unable to express flagellin but still able to produce type 1 pili. The cyclic-di-GMP pathway linking flagella and type 1 pilus expression is not involved in Fis-mediated regulation, and we identified in the present study Fis-binding sites located upstream of the fimE gene and in the intergenic region between fimB and nanC of the fim operon encoding type 1 pili. The major consequence of decreased Fis expression in AIEC bacteria in contact with host cells is a direct downregulation of fimE expression, leading to the preferential ON phase of the fimS element. Thus, by maintaining type 1 pilus expression, AIEC bacteria, which interact with the gut mucosa, have greater ability to colonize and to induce inflammation in CD patients.


2004 ◽  
Vol 72 (5) ◽  
pp. 2484-2493 ◽  
Author(s):  
Nicolas Barnich ◽  
Marie-Agnès Bringer ◽  
Laurent Claret ◽  
Arlette Darfeuille-Michaud

ABSTRACT Escherichia coli strain LF82 recovered from a chronic lesion of a patient with Crohn's disease (CD) is able to adhere to and invade cultured intestinal epithelial cells and to replicate within macrophages. One mutant selected for its impaired ability to invade epithelial cells had an insertion of a Tn phoA transposon within the nlpI gene encoding the lipoprotein NlpI. A NlpI-negative isogenic mutant showed a 35-fold decrease in its ability to adhere to and a 45-fold decrease in its ability to invade Intestine-407 cells, but its ability to survive and to replicate within macrophages was similar to that of wild-type strain LF82. In addition, this mutant did not express flagella and synthesized very small amounts of type 1 pili. Downregulation of type 1 pili in the NlpI-negative mutant resulted from a preferential switch toward the OFF position of the invertible DNA element located upstream of the fim operon. The FimB and FimE recombinases act in concert to control the switch, and a large decrease in fimB and fimE mRNA levels was observed. The absence of flagellar structures correlated with a drastic 19-fold decrease in the fliC mRNA level, regardless of the FlhD2C2 transcriptional regulator and of the σ28 transcription factor. The key role of NlpI in virulence is independent of type 1 pili and motility, since induced type 1 pilus expression and/or forced contact between bacteria and intestinal epithelial cells did not restore the ability of the NlpI mutant to adhere to and to invade intestinal epithelial cells.


2014 ◽  
Vol 146 (2) ◽  
pp. 508-519 ◽  
Author(s):  
Hang Thi Thu Nguyen ◽  
Guillaume Dalmasso ◽  
Stefan Müller ◽  
Jessica Carrière ◽  
Frank Seibold ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document