Su1311 – Optogenetic Analysis of Cholinergic Nerve Pathways in the Myenteric Plexus in the Mouse Distal Colon Ex Vivo

2019 ◽  
Vol 156 (6) ◽  
pp. S-538
Author(s):  
Alberto L. Perez-Medina ◽  
James Galligan
Author(s):  
Daniel E Levin ◽  
Arabinda Mandal ◽  
Mark A Fleming ◽  
Katherine H Bae ◽  
Brielle Gerry ◽  
...  

Abstract The role of enteric neurons in driving intestinal peristalsis has been known for over a century. However, in recent decades, scientists have begun to unravel additional complex interactions between this nerve plexus and other cell populations in the intestine. Investigations into these potential interactions is complicated by a paucity of tractable models of these cellular relationships. Here, we describe a novel technique for ex vivo coculture of enteroids, so called “mini-guts,” in juxtaposition to the longitudinal muscle myenteric plexus (LMMP). Key to this system, we developed a LMMP culture media that: 1) allows the LMMP to maintain ex vivo peristalsis for 2 weeks along with proliferation of neurons, glia, smooth muscle and fibroblast cells, and 2) supports the proliferation and differentiation of the intestinal stem cells into enteroids complete with epithelial enterocytes, Paneth cells, goblet cells and enteroendocrine cells. Importantly, this technique identifies a culture condition that supports both the metabolic needs of intestinal epithelium as well as neuronal elements, demonstrating the feasibility of maintaining these two populations in a single culture system. This sets the stage for experiments to better define the regulatory interactions of these two important intestinal cell populations.


2007 ◽  
Vol 293 (1) ◽  
pp. R64-R69 ◽  
Author(s):  
Kiyoshi Tsukamoto ◽  
Hajime Ariga ◽  
Chris Mantyh ◽  
Theodore N. Pappas ◽  
Hidenori Yanagi ◽  
...  

Enterochromaffin (EC) cells of the epithelial cells release 5-HT into the lumen, as well as basolateral border. However, the physiological role of released 5-HT into the lumen is poorly understood. Concentrations of 5-HT in the colonic mucosa, colonic lumen, and feces were measured by HPLC in rats. To investigate whether intraluminal 5-HT accelerates colonic transit, 5-HT and 51Cr were administered into the lumen of the proximal colon, and colonic transit was measured. To investigate whether 5-HT is released into the lumen, we used an ex vivo model of isolated vascularly and luminally perfused rat proximal colon. To investigate whether luminal 5-HT is involved in regulating stress-induced colonic motility, the distal colonic motility was recorded under the stress loading, and a 5-HT3 receptor antagonist (ondansetron, 10−6 M, 0.5 ml) was administered intraluminally of the distal colon. Tissue content of 5-HT in the proximal colon (15.2 ± 4.3 ng/mg wet tissue) was significantly higher than that in the distal colon (3.3 ± 0.7 ng/mg wet tissue), while fecal content and luminal concentration of 5-HT was almost the same between the proximal and distal colon. Luminal administration of 5-HT (10−6–10−5 M) significantly accelerated colonic transit. Elevation of intraluminal pressure by 10 cmH2O significantly increased the luminal concentration of 5-HT but not the vascular concentration of 5-HT. Stress-induced stimulation of the distal colonic motility was significantly attenuated by the luminal administration of ondansetron. These results suggest that luminally released 5-HT from EC cells plays an important role in regulating colonic motility in rats.


2020 ◽  
Vol 41 (9) ◽  
pp. 1219-1228
Author(s):  
Seçil Demirkol Canlı ◽  
Esin Gülce Seza ◽  
Ilir Sheraj ◽  
Ismail Gömçeli ◽  
Nesrin Turhan ◽  
...  

Abstract AKR1B1 and AKR1B10, members of the aldo-keto reductase family of enzymes that participate in the polyol pathway of aldehyde metabolism, are aberrantly expressed in colon cancer. We previously showed that high expression of AKR1B1 (AKR1B1HIGH) was associated with enhanced motility, inflammation and poor clinical outcome in colon cancer patients. Using publicly available datasets and ex vivo gene expression analysis (n = 51, Ankara cohort), we have validated our previous in silico finding that AKR1B1HIGH was associated with worse overall survival (OS) compared with patients with low expression of AKR1B1 (AKR1B1LOW) samples. A combined signature of AKR1B1HIGH and AKR1B10LOW was significantly associated with worse recurrence-free survival (RFS) in microsatellite stable (MSS) patients and in patients with distal colon tumors as well as a higher mesenchymal signature when compared with AKR1B1LOW/AKR1B10HIGH tumors. When the patients were stratified according to consensus molecular subtypes (CMS), AKR1B1HIGH/AKR1B10LOW samples were primarily classified as CMS4 with predominantly mesenchymal characteristics while AKR1B1LOW/AKR1B10HIGH samples were primarily classified as CMS3 which is associated with metabolic deregulation. Reverse Phase Protein Array carried out using protein samples from the Ankara cohort indicated that AKR1B1HIGH/AKR1B10LOW tumors showed aberrant activation of metabolic pathways. Western blot analysis of AKR1B1HIGH/AKR1B10LOW colon cancer cell lines also suggested aberrant activation of nutrient-sensing pathways. Collectively, our data suggest that the AKR1B1HIGH/AKR1B10LOW signature may be predictive of poor prognosis, aberrant activation of metabolic pathways, and can be considered as a novel biomarker for colon cancer prognostication.


2012 ◽  
Vol 302 (12) ◽  
pp. G1373-G1380 ◽  
Author(s):  
Etienne Suply ◽  
Philine de Vries ◽  
Rodolphe Soret ◽  
François Cossais ◽  
Michel Neunlist

Postnatal changes in the enteric nervous system (ENS) are involved in the establishment of colonic motility. In adult rats, butyrate induced neuroplastic changes in the ENS, leading to enhanced colonic motility. Whether butyrate can induce similar changes during the postnatal period remains unknown. Enemas (Na-butyrate) were performed daily in rat pups between postnatal day (PND) 7 and PND 17. Effects of butyrate were evaluated on morphological and histological parameters in the distal colon at PND 21. The neurochemical phenotype of colonic submucosal and myenteric neurons was analyzed using antibodies against Hu, choline acetyltransferase (ChAT), and neuronal nitric oxide synthase (nNOS). Colonic motility and neuromuscular transmission was assessed in vivo and ex vivo. Butyrate (2.5 mM) enemas had no impact on pup growth and histological parameters compared with control. Butyrate did not modify the number of Hu-immunoreactive (IR) neurons per ganglia. A significant increase in the proportion (per Hu-IR neurons) of nNOS-IR myenteric and submucosal neurons and ChAT-IR myenteric neurons was observed in the distal colon after butyrate enemas compared with control. In addition, butyrate induced a significant increase in both nitrergic and cholinergic components of the neuromuscular transmission compared with control. Finally, butyrate increased distal colonic transit time compared with control. We concluded that butyrate enemas induced neuroplastic changes in myenteric and submucosal neurons, leading to changes in gastrointestinal functions. Our results support exploration of butyrate as potential therapy for motility disorders in preterm infants with delayed maturation of the ENS.


2009 ◽  
Vol 296 (5) ◽  
pp. E1059-E1066 ◽  
Author(s):  
Mei Feng ◽  
Junfang Qin ◽  
Chao Wang ◽  
Yanfang Ye ◽  
Shuanglian Wang ◽  
...  

The study was designed to investigate the effect of estradiol on the excitatory effect of oxytocin (OT) on colon motility. Female Wistar rats were used, and some of them were ovariectomized (OVX) and treated with vehicle or estradiol (E2). A plastic balloon made of condom was inserted into colon to monitor the change of colonic pressure in vivo. Longitudinal muscle strips of distal colon were prepared to monitor the spontaneous contraction of colon in vitro. Expression of OT receptor (OTR) was investigated by Western blot analysis. Expression of OTR mRNA was detected by RT-PCR. Immunohistochemistry was used to locate OTR. In OVX rats, pretreatment of E2 (4–100 μg/kg sc) dose-dependently increased the excitatory effect of OT on colon motility both in vivo and in vitro and increased the expression of OTR and OTR mRNA in colon. Systemic administration of OT excited the colon motility in vivo in rats at perioda of proestrus and estrus but did not influence it at diestrus period, when the concentration of plasma E2 was lowest in the estrous cycle. Pretreatment of atosiban, the specific OTR antagonist, and TTX, the blocker of voltage-dependent sodium channel on nerve fiber, attenuated the excitatory effect of OT on colon motility. OTR was located in myenteric plexus of colon. These results suggested that E2 increased the excitatory effect of OT on colon motility by upregulating the expression of OTR in myenteric plexus.


1984 ◽  
Vol 86 (4) ◽  
pp. 706-713 ◽  
Author(s):  
James Christensen ◽  
Michael J. Stiles ◽  
Gary A. Rick ◽  
Jean Sutherland

Sign in / Sign up

Export Citation Format

Share Document