colonic motility
Recently Published Documents


TOTAL DOCUMENTS

714
(FIVE YEARS 87)

H-INDEX

51
(FIVE YEARS 3)

2022 ◽  
Vol 9 ◽  
Author(s):  
Wei Liu ◽  
Tingting Zhou ◽  
Jinqiu Tian ◽  
Xiaofang Yu ◽  
Chuantao Ren ◽  
...  

ObjectiveTo investigate the effects of glial cell-derived neurotrophic factor (GDNF), GDNF family receptor alpha 1 (GFRα1), and glial fibrillary acidic protein (GFAP) on colonic motility in a mouse model of intestinal neuronal dysplasia by intervention with Bifidobacterium and to explore the influence of Bifidobacterium on enteric glial cells (EGCs).MethodsWestern blotting and qRT-PCR were employed to detect the expression of GFRα1 and GFAP in colonic tissues of mice with or without Tlx2 mutations, and ELISA was used to detect the expression of GDNF in serum. IHC was used to detect the appearance of the ganglion cells. Subsequently, Tlx2 homozygous mutant (Tlx2−/−) mice were treated with Bifidobacterium. Colonic motility was measured before and after intervention by measuring the glass bead expelling time. The variations in abdominal circumference and GDNF, GFRα1, and GFAP expression were measured. In addition, 16SrRNA gene sequencing was performed to detect the abundance of the intestinal microbiota.ResultsThe mRNA and protein expression of GFRα1 and GFAP was decreased in the colonic tissues of Tlx2−/− mice and GDNF expression was decreased in serum compared with Tlx2+/− and WT mice. After confirming the colonization of Bifidobacterium by 16S rRNA gene sequencing, the expelling time and abdominal distension were ameliorated, and the expression of GFAP, GDNF, and GFRα1 was increased.ConclusionsThe expression of GDNF, GFRα1, and GFAP is associated with colonic motility. The altered expression of EGC-related factors suggested that Bifidobacterium may be involved in the EGC activation process. The amelioration of IND symptoms after intervention with Bifidobacterium prompted the elicitation of adjuvant therapy.


2021 ◽  
pp. 48-51
Author(s):  
М. М. Fedorin ◽  
M. A. Livzan ◽  
O. V. Gaus

The increasing proportion of the population suffering from overweight or obesity is now taking on the character of a pandemic. In the literature, there have begun to appear reports of associations in individuals with impaired colonic motility and a body mass index above 25 kg/m2. The present publication was prepared to systematize data on possible mechanisms of colonic motility disorders in overweight and obese individuals, including through changes in adipokine secretion and function. The literature search was performed in Embase, PubMed, and Google Scholar, using the key words ‘colon motility regulation’, ‘adipokines’, ‘gastrointestinal hormones’, ‘intestinal microbiota’, ‘overweight’, ‘obesity’, ‘visceral fat’.


2021 ◽  
Vol 12 ◽  
Author(s):  
William Dan ◽  
Ga Hyun Park ◽  
Shruti Vemaraju ◽  
Amy D. Wu ◽  
Kristina Perez ◽  
...  

Opsin photoreceptors outside of the central nervous system have been shown to mediate smooth muscle photorelaxation in several organs. We hypothesized that opsin receptor activation in the colon would have a similar effect and influence colonic motility. We detected Opsin 3 (OPN3) protein expression in the colonic wall and demonstrated that OPN3 was present in enteric neurons in the muscularis propria of the murine colon. Precontracted murine colon segments demonstrated blue light (BL) -mediated relaxation ex vivo. This photorelaxation was wavelength specific and was increased with the administration of the chromophore 9-cis retinal and a G protein receptor kinase 2 (GRK2) inhibitor. Light-mediated relaxation of the colon was not inhibited by L-NAME or tetrodotoxin (TTX). Furthermore, BL exposure in the presence of 9-cis retinal decreased the frequency of colonic migrating motor complexes (CMMC) in spontaneously contracting mouse colons ex vivo. These results demonstrate for the first time a receptor-mediated photorelaxation of colonic smooth muscle and implicate opsins as possible new targets in the treatment of spasmodic gastrointestinal dysmotility.


2021 ◽  
Author(s):  
Anthony Y Lin ◽  
Chris Varghese ◽  
Niranchan Paskaranandavadivel ◽  
Sean Seo ◽  
Peng Du ◽  
...  

Background and aims: The rectosigmoid brake, characterized by retrograde cyclic motor patterns on high-resolution colonic manometry has been postulated as a contributor to the maintenance of bowel continence. Sacral neuromodulation (SNM) is an effective therapy for faecal incontinence, but its mechanism of action is unclear. This study aims to investigate the colonic motility patterns in the distal colon of patients with faecal incontinence, and how these are modulated by SNM. Methods: A high-resolution fibre-optic colonic manometry catheter, containing 36 sensors spaced at 1-cm intervals, was positioned in patients with faecal incontinence undergoing Stage 1 SNM. One hour of pre-meal and post-meal recordings were obtained followed by pre- and post-meal recordings with suprasensory SNM. A 700-kcal meal was given. Data were analysed to identify propagating contractions. Results: Fifteen patients with faecal incontinence were analysed. Patients had an abnormal meal response (fewer retrograde propagating contractions compared to controls; p=0.027) and failed to show a postmeal increase in propagating contractions (mean 17 +/- 6/h pre-meal vs 22 +/- 9/h post-meal, p = 0.438). Compared to baseline, SNM significantly increased the number of retrograde propagating contractions in the distal colon (8 +/- 3/h pre-meal vs 14 +/- 3/h pre-meal with SNM, p = 0.028). Consuming a meal did not further increase the number of propagating contractions beyond the baseline upregulating effect of SNM. Conclusion: The rectosigmoid brake was suppressed in this cohort of patients with faecal incontinence. SNM may exert a therapeutic effect by modulating this rectosigmoid brake.


Author(s):  
Yuki Kobayashi ◽  
Shota Takemi ◽  
Takafumi Sakai ◽  
Chikashi Shibata ◽  
Ichiro Sakata

2021 ◽  
Vol 10 (22) ◽  
pp. 5282
Author(s):  
Changyoon Ha ◽  
Heejin Kim ◽  
Rari Cha ◽  
Jaemin Lee ◽  
Sangsoo Lee ◽  
...  

Background: Compared to the general population, diabetic patients experience more frequent episodes of gastrointestinal (GI) motility dysfunction, owing to the disruption of functional innervations. DA-9701 is a new prokinetic agent formulated from the extracts of Pharbitidis semen and Corydalis tuber. Aim: To investigate the effect of DA-9701 on GI motility in an animal model of streptozotocin (STZ)-induced diabetes. Methods: Diabetes was induced in mice by intraperitoneal injection of STZ (40 mg/kg of body weight in 0.1 M citrate buffer) for 3 days. Diabetic mice were divided into four groups and administered DA-9701 in different doses (1, 3, and 10 mg/kg) or placebo for 2 weeks. Intestinal transit was assessed using charcoal meal movement. GI isometric contraction was measured by applying an isometric force transducer on a circular muscle strip of the antrum, ileum, and proximal colon of sacrificed mice. Gastric emptying rate was evaluated by measuring the dye percentage remaining in the stomach relative to the total dye amount recovered in a standardization group of mice. Results: Body weight and antral and small intestinal motility were less in diabetic mice than in control mice, and colonic motility was similar in both. DA-9701 showed a dose-dependent increase in the amplitude of spontaneous phasic contractions in the antrum, ileum, and colon in diabetic mice without influencing body weight or blood glucose levels. The degree of improvement was comparable between diabetic and control mice. Intestinal transit was significantly more delayed in diabetic mice than in controls (43 ± 7% vs. 67 ± 8%, p < 0.05); however, DA-9701 restored the delayed intestinal transit more effectively compared to placebo (75% vs. 50%). The gastric emptying rate was significantly more delayed in diabetic mice than in controls (43 ± 10% vs. 62 ± 12%, p < 0.05), and was improved by DA-9701 in a dose-dependent manner (50%, 55%, and 60% in mice treated with 1, 3, and 10 mg/kg of DA-9701, respectively, vs. 43% in placebo-treated and 60% in control mice). Conclusions: DA-9701 improved GI contractility without affecting blood sugar and body weight in diabetic mice. DA-9701 could improve the decreased GI motility and clinical symptoms in progressive diabetic patients.


Medicina ◽  
2021 ◽  
Vol 57 (11) ◽  
pp. 1147
Author(s):  
Ju-Ryun Na ◽  
Ki Hoon Lee ◽  
Eun Kim ◽  
Kwontack Hwang ◽  
Chang-Su Na ◽  
...  

Background and Objectives: This study aimed at investigating the laxative effects of a standardized aqueous extract of Dendropanax morbiferus H. Lév. on two different constipation rat models. Materials and Methods: Animal studies were conducted with low-fiber diet-induced and loperamide-induced constipation animal models, and isolated colons were used in ex vivo analysis to determine the changes in colonic motility caused by D. morbiferus H. Lév. leaf extract (DPL). Results: The results showed that DPL administration significantly improved certain reduced fecal parameters (number, weight, and water content of the stools) in a both low-fiber diet and loperamide-induced constipation models without adverse effects of diarrhea. The laxative effect of DPL was confirmed to improve the charcoal excretion time upon DPL treatment in a low-fiber diet or loperamide-induced constipation model through gastrointestinal (GI) motility evaluation using the charcoal meal test. In addition, when DPL was administered to RAW264.7 cells and loperamide-induced constipation model rats, the production of prostaglandin E2 (PGE2) increased significantly in cells and tissue. Furthermore, DPL dose-dependently stimulated the spontaneous contractile amplitude and frequency of the isolated rat colon. Conclusion: Although our study did not provide information on the acute or chronic toxicity of DPL, our results demonstrated that DPL can effectively promote defecation frequency and rat colon contraction, providing scientific evidence to support the use of DPL as a therapeutic application. However, further toxicity studies of DPL are needed prior to the initiation of clinical trials and clinical applications.


Author(s):  
Ervice Pouokam ◽  
Adriana Vallejo ◽  
Emma Martínez ◽  
Sara Traserra ◽  
Marcel Jimenez

Abstract Objectives Reactive oxygen and nitrogen species may be produced during inflammation leading to the formation of NO, H2S or HNO. Enzymes such as iNOS, CSE and CBS might also be responsible for polysulfide production. Since these signalling molecules might have an impact on colonic motility, the aim of this study was to compare their effect on rat colonic slow phasic contractions (SPC). Methods Organ bath measurements with strips obtained from rat proximal colon were performed using the polysulfide Na2S3, sodium nitroprusside (NaNP), sodium hydrogen sulfide (NaHS), Angeli’s salt as NO, H2S, and HNO donors, respectively. TTX (1 µM) was used to block neuronal activity. Results All four molecules, concentration-dependently, inhibited the amplitude and frequency of SPC both in the circular and longitudinal muscle layer. The relative potency was NaNP>Angeli’s salt>NaHS>Na2S3. The inhibitory response induced by NaNP (1 µM) and Angeli’s salt (50 µM) was reversed by ODQ (10 µM) whereas the inhibitory effect of NaHS (1 mM) was reversed by apamin (1 µM) and glibenclamide (10 µM). Na2S3 (1 mM) response was partially reversed by apamin (1 µM) and glibenclamide (10 µM). High concentrations of Na2S3 caused an increase in tone. Low concentrations of NaHS or Na2S3 did not potentiate NaNP responses. Conclusions All signalling molecules inhibit SPC in both muscle layers. The effect is independent of neural activity and involves guanylyl cyclase (NO and HNO) and SKCa and KATP channels (NaHS or Na2S3). Other pathways might also be involved in Na2S3 responses. Accordingly, complementary mechanisms of inhibition might be attributable to these signalling molecules.


Author(s):  
Jan D. Huizinga ◽  
Amer Hussain ◽  
Ji-Hong Chen

Our understanding of human colonic motility, and autonomic reflexes that generate motor patterns, has increased markedly through high-resolution manometry. Details of the motor patterns are emerging related to frequency and propagation characteristics that allow linkage to interstitial cells of Cajal (ICC) networks. In studies on colonic motor dysfunction requiring surgery, ICC are almost always abnormal or significantly reduced. However, there are still gaps in our knowledge about the role of ICC in the control of colonic motility and there is little understanding of a mechanistic link between ICC abnormalities and colonic motor dysfunction. This review will outline the various ICC networks in the human colon and their proven and likely associations with the enteric and extrinsic autonomic nervous systems. Based on our extensive knowledge of the role of ICC in the control of gastrointestinal motility of animal models and the human stomach and small intestine, we propose how ICC networks are underlying the motor patterns of the human colon. The role of ICC will be reviewed in the autonomic neural reflexes that evoke essential motor patterns for transit and defecation. Mechanisms underlying ICC injury, maintenance, and repair will be discussed. Hypotheses are formulated as to how ICC dysfunction can lead to motor abnormalities in slow transit constipation, chronic idiopathic pseudo-obstruction, Hirschsprung's disease, fecal incontinence, diverticular disease, and inflammatory conditions. Recent studies on ICC repair after injury hold promise for future therapies.


Sign in / Sign up

Export Citation Format

Share Document