Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils

2001 ◽  
Vol 65 (7) ◽  
pp. 1087-1099 ◽  
Author(s):  
Brian W Stewart ◽  
Rosemary C Capo ◽  
Oliver A Chadwick
2020 ◽  
Vol 17 (2) ◽  
pp. 281-304 ◽  
Author(s):  
Sophie Casetou-Gustafson ◽  
Harald Grip ◽  
Stephen Hillier ◽  
Sune Linder ◽  
Bengt A. Olsson ◽  
...  

Abstract. Reliable and accurate methods for estimating soil mineral weathering rates are required tools in evaluating the sustainability of increased harvesting of forest biomass and assessments of critical loads of acidity. A variety of methods that differ in concept, temporal and spatial scale, and data requirements are available for measuring weathering rates. In this study, causes of discrepancies in weathering rates between methods were analysed and were classified as being either conceptual (inevitable) or random. The release rates of base cations (BCs; Ca, Mg, K, Na) by weathering were estimated in podzolised glacial tills at two experimental forest sites, Asa and Flakaliden, in southern and northern Sweden, respectively. Three different methods were used: (i) historical weathering since deglaciation estimated by the depletion method, using Zr as the assumed inert reference; (ii) steady-state weathering rate estimated with the PROFILE model, based on quantitative analysis of soil mineralogy; and (iii) BC budget at stand scale, using measured deposition, leaching and changes in base cation stocks in biomass and soil over a period of 12 years. In the 0–50 cm soil horizon historical weathering of BCs was 10.6 and 34.1 mmolc m−2 yr−1, at Asa and Flakaliden, respectively. Corresponding values of PROFILE weathering rates were 37.1 and 42.7 mmolc m−2 yr−1. The PROFILE results indicated that steady-state weathering rate increased with soil depth as a function of exposed mineral surface area, reaching a maximum rate at 80 cm (Asa) and 60 cm (Flakaliden). In contrast, the depletion method indicated that the largest postglacial losses were in upper soil horizons, particularly at Flakaliden. With the exception of Mg and Ca in shallow soil horizons, PROFILE produced higher weathering rates than the depletion method, particularly of K and Na in deeper soil horizons. The lower weathering rates of the depletion method were partly explained by natural and anthropogenic variability in Zr gradients. The base cation budget approach produced significantly higher weathering rates of BCs, 134.6 mmolc m−2 yr−1 at Asa and 73.2 mmolc m−2 yr−1 at Flakaliden, due to high rates estimated for the nutrient elements Ca, Mg and K, whereas weathering rates were lower and similar to those for the depletion method (6.6 and 2.2 mmolc m−2 yr−1 at Asa and Flakaliden). The large discrepancy in weathering rates for Ca, Mg and K between the base cation budget approach and the other methods suggests additional sources for tree uptake in the soil not captured by measurements.


2006 ◽  
Vol 152 (5) ◽  
pp. 571-589 ◽  
Author(s):  
Friedrich Lucassen ◽  
Wolfgang Kramer ◽  
Viola Bartsch ◽  
Hans-Gerhard Wilke ◽  
Gerhard Franz ◽  
...  

2021 ◽  
Vol 62 (4) ◽  
pp. 415-426
Author(s):  
E.I. Lastochkin ◽  
G.S. Ripp ◽  
D.S. Tsydenova ◽  
V.F. Posokhov ◽  
A.E. Murzintseva

Abstract —We consider the isotope-geochemical features of epithermal fluorite deposits in Transbaikalia, including the REE compositions, Sr isotope ratios, Sm–Nd systems, and isotope compositions of oxygen, carbon, hydrogen, and sulfur. The 87Sr/86Sr ratios in fluorites are within 0.706–0.708, and the εNd values are negative. Oxygen in quartz, the main mineral of the deposits, has a light isotope composition (δ18O = –3.4 to +2.6‰), and the calculated isotope composition of oxygen in the fluid in equilibrium with quartz (δ18O = –9 to –16‰) indicates the presence of meteoric water. The latter is confirmed by analysis of the isotope compositions of oxygen and hydrogen in gas–liquid inclusions in fluorites from three deposits. These isotope compositions are due to recycling caused by the impact of shallow basic plutons. The isotope composition of sulfur indicates its deep source. During ascent, sulfur became enriched in its light isotope (δ34S = –1.8 to –7.7‰). We assess the association of fluorite ores with basaltoids widespread in the study area. The isotope and geochemical parameters suggest their spatial proximity. Probably, the basaltoids were responsible for the recycling of meteoric water. It is shown that the epithermal fluorite deposits formed by the same mechanism as fissure–vein thermal waters in western Transbaikalia.


Author(s):  
L. Angiolini ◽  
D. P. F. Darbyshire ◽  
M. H. Stephenson ◽  
M. J. Leng ◽  
T. S. Brewer ◽  
...  

ABSTRACTThe Lower Permian of the Haushi basin, Interior Oman (Al Khlata Formation to Saiwan Formation/lower Gharif member) records climate change from glaciation, through marine sedimentation in the Haushi sea, to subtropical desert. To investigate the palaeoclimatic evolution of the Haushi Sea we used O, C, and Sr isotopes from 31 brachiopod shells of eight species collected bed by bed within the type-section of the Saiwan Formation. We assessed diagenesis by scanning electron microscopy of ultrastructure, cathodoluminescence, and geochemistry, and rejected fifteen shells not meeting specific preservation criteria. Spiriferids and spiriferinids show better preservation of the fibrous secondary layer than do orthotetids and productids and are therefore more suitable for isotopic analysis. δ18O of −3·7 to −3·1℅ from brachiopods at the base of the Saiwan Formation are probably related to glacial meltwater. Above this, an increase in δ18O may indicate ice accumulation elsewhere in Gondwana or more probably that the Haushi sea was an evaporating embayment of the Neotethys Ocean. δ13C varies little and is within the range of published data: its trend towards heavier values is consistent with increasing aridity and oligotrophy. Saiwan Sr isotope signatures are less radiogenic than those of the Sakmarian LOWESS seawater curve, which is based on extrapolation between few data points. In the scenario of evaporation in a restricted Haushi basin, the variation in Sr isotope composition may reflect a fluvial component.


Nature ◽  
1985 ◽  
Vol 314 (6011) ◽  
pp. 526-528 ◽  
Author(s):  
M. R. Palmer ◽  
H. Elderfield

2018 ◽  
Vol 56 (12) ◽  
pp. 1209-1219 ◽  
Author(s):  
A. V. Dubinin ◽  
A. B. Kuznetsov ◽  
M. N. Rimskaya-Korsakova ◽  
T. Kh. Safin

2021 ◽  
Author(s):  
Sonja Lojen ◽  
Qasim Jamil ◽  
Tea Zuliani ◽  
Leja Rovan ◽  
Tjaša Kanduč ◽  
...  

<p>Precipitation of calcite from water fractionates strontium (Sr) isotopes because of preferential incorporation of light (<sup>86</sup>Sr) isotopes into the solid phase, making continental carbonates one of the most <sup>88</sup>Sr depleted reservoirs. It was suggested that carbonate precipitation is the most likely process controlling <em>δ</em><sup>88/86</sup>Sr composition of karst water. Therefore, the <sup>88</sup>Sr enrichment of river water could be used for the estimation of Sr and carbonate precipitation at catchment scale.</p><p>In the present study, we report on trace element partitioning and Sr isotope fractionation between tufa and water in the groundwater fed karst river Krka (Croatia). Water and tufa along with samples of bedrock and soil as the main contributors of dissolved and particulate Sr at seven main waterfalls and cascades along a 33 km section of the river were analysed for trace element and Sr isotope composition (<em>δ</em><sup>88/86</sup>Sr).</p><p>The highest δ<sup>88/86</sup>Sr values were measured in soils and in siliciclastic rocks, while in limestone, the <em>δ</em><sup>88/86</sup>Sr values were similar to those of old tufa precipitated in the period between 96 and 141 ky BP. Recent tufa, however, was considerably depleted in <sup>88</sup>Sr. The isotope fractionation between water and recent tufa varied a lot and was inversely correlated with Mg and Sr partitioning coefficients, while correlations with precipitation rates and temperature were rather weak. The <em>δ</em><sup>88/86</sup>Sr of recent tufa was strongly correlated with the stable isotope composition of organic carbon, which indicates that apart from hydrochemical, hydraulic parameters and temperature, plants and microbial communities that knowingly stimulate the tufa formation also affect the isotope fractionation of Sr.</p>


Sign in / Sign up

Export Citation Format

Share Document