Nd and Sr Isotope Composition in the Tooth Enamel from Fe–Mn Nodules of the Cape Basin (Atlantic Ocean): Age and Sources

2018 ◽  
Vol 56 (12) ◽  
pp. 1209-1219 ◽  
Author(s):  
A. V. Dubinin ◽  
A. B. Kuznetsov ◽  
M. N. Rimskaya-Korsakova ◽  
T. Kh. Safin
2006 ◽  
Vol 152 (5) ◽  
pp. 571-589 ◽  
Author(s):  
Friedrich Lucassen ◽  
Wolfgang Kramer ◽  
Viola Bartsch ◽  
Hans-Gerhard Wilke ◽  
Gerhard Franz ◽  
...  

2021 ◽  
Vol 62 (4) ◽  
pp. 415-426
Author(s):  
E.I. Lastochkin ◽  
G.S. Ripp ◽  
D.S. Tsydenova ◽  
V.F. Posokhov ◽  
A.E. Murzintseva

Abstract —We consider the isotope-geochemical features of epithermal fluorite deposits in Transbaikalia, including the REE compositions, Sr isotope ratios, Sm–Nd systems, and isotope compositions of oxygen, carbon, hydrogen, and sulfur. The 87Sr/86Sr ratios in fluorites are within 0.706–0.708, and the εNd values are negative. Oxygen in quartz, the main mineral of the deposits, has a light isotope composition (δ18O = –3.4 to +2.6‰), and the calculated isotope composition of oxygen in the fluid in equilibrium with quartz (δ18O = –9 to –16‰) indicates the presence of meteoric water. The latter is confirmed by analysis of the isotope compositions of oxygen and hydrogen in gas–liquid inclusions in fluorites from three deposits. These isotope compositions are due to recycling caused by the impact of shallow basic plutons. The isotope composition of sulfur indicates its deep source. During ascent, sulfur became enriched in its light isotope (δ34S = –1.8 to –7.7‰). We assess the association of fluorite ores with basaltoids widespread in the study area. The isotope and geochemical parameters suggest their spatial proximity. Probably, the basaltoids were responsible for the recycling of meteoric water. It is shown that the epithermal fluorite deposits formed by the same mechanism as fissure–vein thermal waters in western Transbaikalia.


2018 ◽  
Vol 33 (6) ◽  
pp. 643-663 ◽  
Author(s):  
Julia Gottschalk ◽  
David A. Hodell ◽  
Luke C. Skinner ◽  
Simon J. Crowhurst ◽  
Samuel L. Jaccard ◽  
...  

Author(s):  
L. Angiolini ◽  
D. P. F. Darbyshire ◽  
M. H. Stephenson ◽  
M. J. Leng ◽  
T. S. Brewer ◽  
...  

ABSTRACTThe Lower Permian of the Haushi basin, Interior Oman (Al Khlata Formation to Saiwan Formation/lower Gharif member) records climate change from glaciation, through marine sedimentation in the Haushi sea, to subtropical desert. To investigate the palaeoclimatic evolution of the Haushi Sea we used O, C, and Sr isotopes from 31 brachiopod shells of eight species collected bed by bed within the type-section of the Saiwan Formation. We assessed diagenesis by scanning electron microscopy of ultrastructure, cathodoluminescence, and geochemistry, and rejected fifteen shells not meeting specific preservation criteria. Spiriferids and spiriferinids show better preservation of the fibrous secondary layer than do orthotetids and productids and are therefore more suitable for isotopic analysis. δ18O of −3·7 to −3·1℅ from brachiopods at the base of the Saiwan Formation are probably related to glacial meltwater. Above this, an increase in δ18O may indicate ice accumulation elsewhere in Gondwana or more probably that the Haushi sea was an evaporating embayment of the Neotethys Ocean. δ13C varies little and is within the range of published data: its trend towards heavier values is consistent with increasing aridity and oligotrophy. Saiwan Sr isotope signatures are less radiogenic than those of the Sakmarian LOWESS seawater curve, which is based on extrapolation between few data points. In the scenario of evaporation in a restricted Haushi basin, the variation in Sr isotope composition may reflect a fluvial component.


Zootaxa ◽  
2009 ◽  
Vol 1992 (1) ◽  
pp. 20-36 ◽  
Author(s):  
SIMON WEIGMANN ◽  
JÜRGEN GUERRERO-KOMMRITZ

As part of the sampling efforts during the DIVA-II expedition several Tanaidacea of the genus Neotanais were captured in the Guinea and the Cape Basin in the tropical and southern East Atlantic Ocean. Two different species were sampled, Neotanais rotermundiae sp. n. from the Guinea and Neotanais guskei sp. n. from the Cape Basin. The distribution of both species is limited to these basins. A full description for both species is presented. Neotanais guskei sp. n. is the largest Neotanais reported for the South Atlantic Ocean.


Paleobiology ◽  
2000 ◽  
Vol 26 (2) ◽  
pp. 294-309 ◽  
Author(s):  
Antoine Zazzo ◽  
Hervé Bocherens ◽  
Daniel Billiou ◽  
André Mariotti ◽  
Michel Brunet ◽  
...  

Chad is a key region for understanding early hominid geographic expansion in relation to late Miocene and Pliocene environmental changes, owing to its location 2500 km west from the Rift Valley and to the occurrence of sites ranging in age from about 6 to 3 Ma, some of which yield fossil hominids. To reconstruct changes in herbivore paleodiet and therefore changes in the paleoenvironment, we measured the carbon and oxygen isotope composition of 80 tooth-enamel samples from three time horizons for nine families of Perissodactyla, Proboscidea, and Artiodactyla. The absence of significant alteration of in vivo isotopic signatures can be determined for carbon, thus allowing paleodietary and paleoenvironmental interpretations to be made.While the results generally confirm previous dietary hypotheses, mostly based on relative crown height, there are some notable surprises. The main discrepancies are found among low-crowned proboscideans (e.g., Anancus) and high-crowned rhinocerotids (Ceratotherium). Both species were more opportunistic feeders than it is usually believed. This result confirms that ancient feeding ecology cannot always be inferred from dental morphology or extant relatives.There is an increase in the average carbon isotope composition of tooth enamel from the oldest unit to the youngest, suggesting that the environment became richer in C4 plants with time. In turn, more C4 plants indicate an opening of the plant cover during this period. This increase in carbon isotope composition is also recorded within genera such as Nyanzachoerus, Ceratotherium, and Hexaprotodon, indicating a change from a C3-dominated to a C4-dominated diet over time. It appears that, unlike other middle Pliocene hominid sites in eastern and southern Africa, this part of Chad was characterized by very open conditions and that savanna-like grasslands were already dominant when hominids were present in the area.


Sign in / Sign up

Export Citation Format

Share Document