Forced convection in thermally developing turbulent flow of drag-reducing fluids within circular tubes

2000 ◽  
Vol 43 (20) ◽  
pp. 3785-3794 ◽  
Author(s):  
E.N. Macêdo ◽  
C.E. Maneschy ◽  
J.N.N. Quaresma
Author(s):  
Tapish Agarwal ◽  
Iman Rahbari ◽  
Jorge Saavedra ◽  
Guillermo Paniagua ◽  
Beni Cukurel

Abstract The behavioral characteristics of thermal boundary layer dictate the relative efficiency of forced convection heat transfer. This research effort is related to the detailed analysis of the temporal evolution of thermal boundary layer under periodic excitations. In presence of oscillations, a distinct thin Stokes layer is formed inside the attached boundary layer, which interacts nonlinearly with the mean flow in the near wall region. This interaction leads to modification of temporally averaged flow fields, commonly known as acoustic streaming. As a result, the aero-thermal wall gradients are modified leading to significant changes in wall shear stress and heat flux. However, the small spatial scales and the inherent unsteady nature of streaming has presented challenges for prior numerical investigations, preventing the identification of optimal parameters. In order to address this void in numerical framework, the development of a three-tier numerical approach is presented. As a first layer of fidelity, a laminar model is developed for fluctuations and streaming flow calculations in laminar flows subjected to travelling wave disturbances. This technique is an extension of the Lin’s method to traveling wave disturbances of various speeds (absent of previously employed assumptions), along with inclusion of energy equation. With low computational cost, this level of abstraction is intended to identify the broad parameter space that yield desirable heat transfer alterations. At the next level of fidelity, 2D U-RANS simulations are conducted across both laminar and turbulent flow regimes. This is geared towards extending the parameter space obtained from laminar model to turbulent flow conditions. As the third level of fidelity, temporally and spatially resolved DNS simulations are conducted to simulate the application relevant compressible flow environment. The exemplary findings indicate that in certain parameter space, both enhancement and reduction in heat transfer can be obtained through acoustic streaming. Moreover, the extent of heat transfer modulations is greater than alterations in wall shear, thereby surpassing Reynolds analogy.


Author(s):  
O. Manca ◽  
S. Nardini ◽  
D. Ricci

Conventional sources of energy have been depleting at an alarming rate, which makes future sustainable development of energy use very difficult. Thus, heat transfer enhancement technology plays an important role and it has been widely applied to many applications as in refrigeration, automotive, process industry, solar energy heater, etc. Convective heat transfer can be enhanced passively by changing flow geometry, boundary conditions or by increasing thermal conductivity of the fluid. Another possibility for increasing heat transfer with gas is to employ extended surfaces. In this paper a numerical investigation is carried out on forced convection in circular tubes with septa heated by constant fluxes and characterized by different shapes. When gas flows in a tube, septa with one or more openings can be used as fins. Furthermore, when the openings are arranged to give a spiral motion around the cylinder axis wall-fluid contact area increases. As a consequence the presence of the septa may significantly augment pressure drops. The fluid is air and properties are function of temperature. Septa of the same material of the tube are introduced and several shapes and arrangements are analyzed as well as different Reynolds numbers, baffle spacings and heat fluxes applied on the external surface. The investigation is accomplished by means of the commercial code Fluent. A k-e turbulence model is used with enhanced wall treatment options. Results are presented in terms of temperature and velocity fields, local and average heat transfer coefficients, friction factors and pressure drops for different values of heat flux, Reynolds numbers and baffle spacings. The aim of this study is to find the shape and arrangement of septa such to give high heat transfer coefficients and low pressure drops.


2009 ◽  
Vol 29 (17-18) ◽  
pp. 3632-3642 ◽  
Author(s):  
V. Bianco ◽  
F. Chiacchio ◽  
O. Manca ◽  
S. Nardini

Sign in / Sign up

Export Citation Format

Share Document