Efficient finite-difference scheme for solving some heat transfer problems with convection in multilayer media

2000 ◽  
Vol 43 (24) ◽  
pp. 4467-4474 ◽  
Author(s):  
H. Kalis
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Iyyappan G. ◽  
Abhishek Kumar Singh

Purpose The purpose of this paper is to analyse the force convection laminar boundary layer flow on irregular boundary in diverging channel with the presence of magnetic field effects. Effects of various fluid parameters such as suction/injection, viscous dissipation, magnetic parameter and heat source/sink on velocity and temperature profiles are numerically analyzed. Moreover, numerically investigated on skin-friction and heat transfer coefficients when suction/injection occur. Design/methodology/approach The governing coupled partial differential equations are transformed to dimensionless form using non-similarity transformations. The non-dimensional partial differential equations are linearized by quasi-linearization technique and solved by varga's algorithm with numerical finite difference scheme on a non-uniform mesh. Findings The computation results are presented in terms of temperature, heat transfer and skin friction coefficients; these are useful for determining surface heat requirements. It was found that, in finite difference scheme for non-uniform mesh with quasi-linearization technique method gives smoothness of solution compared to finite difference scheme for uniform mesh, and this evidence is graphically represented in Figure 2. Originality/value The impacts of viscous dissipation (Ec) and magnetic parameter (Ha) on temperature profiles, skin friction and heat transfer are analyzed, which determine the heat generation/absorption to ensure the MHD flow of the laminar boundary layer on irregular boundary over a diverging channel.


2021 ◽  
Vol 15 ◽  
pp. 174830262110113
Author(s):  
Qianying Hong ◽  
Ming-jun Lai ◽  
Jingyue Wang

We present a convergence analysis for a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fetami model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme.


Sign in / Sign up

Export Citation Format

Share Document