scholarly journals Electroohamacology of the time-dependent outward, delayed rectifier, current in single ventricular cells from the guinea pig heart

1988 ◽  
Vol 46 ◽  
pp. 14
Author(s):  
Toshihiko Iijima
1987 ◽  
Vol 253 (5) ◽  
pp. H1321-H1324 ◽  
Author(s):  
N. Tohse ◽  
M. Kameyama ◽  
H. Irisawa

Effects of protein kinase C (PKC) and intracellular calcium ion (Cai2+) on the delayed rectifier K+ current (IK) were investigated in the single ventricular cells of guinea pig by use of an internal-dialysis method and a whole cell voltage-clamp technique. 12-O-tetradecanoylphorbol-13-acetate (TPA, 10(-9) M), an activator of PKC, increased the amplitude of IK in the presence of Cai2+ higher than 10(-10) M. This effect of TPA was mimicked by a synthetic diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), 50 micrograms/ml, 125 microM, and was blocked by 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (10 microM). The above findings suggest that IK channels were phosphorylated by PKC and thereby the amplitude of IK was increased. IK was also increased by elevating the concentration of Cai2+ in the absence of TPA. It is thus indicated that IK channels are modulated by Cai2+ not only through activation of PKC but also directly. Our observation may provide a possible mechanism by which Cai2+ mediates the link between the Ca2+ transients during contraction and the action potential duration.


1994 ◽  
Vol 3 (1) ◽  
pp. 45-51
Author(s):  
M. Gollasch ◽  
T. Kleppisch ◽  
D. Krautwurst ◽  
D. Lewinsohn ◽  
J. Hescheler

Platelet-activating factor (PAF) inhibits single inwardly rectifying K+channels in guinea-pig ventricular cells. There is currently little information as to the mechanism by which these channels are modulated. The effect of PAF on quasi steady-state inwardly rectifying K+currents (presumably of the IK1type) of auricular, atrial and ventricular cardiomyocytes from guinea-pig were studied. Applying the patch-clamp technique in the whole-cell configuration, PAF (10 nM) reduced the K+currents in all three cell types. The inhibitory effect of PAF occurred within seconds and was reversible upon wash-out. It was almost completely abolished by the PAF receptor antagonist BN 50730. Intracellular infusion of atrial cells with guanine 5′-(β-thio)diphosphate (GDPS) or pretreatment of cells with pertussis toxin abolished the PAF dependent reduction of the currents. Neither extracellularly applied isoproterenol nor intracellularly applied adenosine 3′,5′-cyclic monophosphate (cyclic AMP) attenuated the PAF effect. In multicellular preparations of auricles, PAF (10 nM) induced arrhythmias. The arrhythmogenic activity was also reduced by BN 50730. The data indicate that activated PAF receptors inhibit inwardly rectifying K+currents via a pertussis toxin sensitive G-protein without involvement of a cyclic AMP-dependent step. Since IK1is a major component in stabilizing the resting membrane potential, the observed inhibition of this type of channel could play an important role in PAF dependent arrhythmogenesis in guinea-pig heart.


1987 ◽  
Vol 44 (4) ◽  
pp. 481-488
Author(s):  
Sohta KATAYAMA ◽  
Akihiro NARIMATSU ◽  
Reiko SUZUKI ◽  
Toshihiko IIJIMA ◽  
Norio TAIRA

2002 ◽  
Vol 282 (4) ◽  
pp. R1191-R1199 ◽  
Author(s):  
Matti Vornanen ◽  
Ari Ryökkynen ◽  
Antti Nurmi

Temperature has a strong influence on the excitability and the contractility of the ectothermic heart that can be alleviated in some species by temperature acclimation. The molecular mechanisms involved in the temperature-induced improvement of cardiac contractility and excitability are, however, still poorly known. The present study examines the role of sarcolemmal K+ currents from rainbow trout ( Oncorhynchus mykiss) cardiac myocytes after thermal acclimation. The two major K+ conductances of the rainbow trout cardiac myocytes were identified as the Ba2+-sensitive background inward rectifier current ( I K1) and the E-4031-sensitive delayed rectifier current ( I Kr). In atrial cells, the density of I K1 is very low and the density of I Kr is remarkably high. The opposite is true for ventricular cells. Acclimation to cold (4°C) modified the two K+ currents in opposite ways. Acclimation to cold increases the density of I Kr and depresses the density of I K1. These changes in repolarizing K+ currents alter the shape of the action potential, which is much shorter in cold-acclimated than warm-acclimated (17°C) trout. These results provide the first concrete evidence that K+channels of trout cardiac myocytes are adaptable units that provide means to regulate cardiac excitability and contractility as a function of temperature.


1991 ◽  
Vol 260 (4) ◽  
pp. H1390-H1393 ◽  
Author(s):  
K. B. Walsh ◽  
J. P. Arena ◽  
W. M. Kwok ◽  
L. Freeman ◽  
R. S. Kass

When the patch-clamp technique was used, a slowly activating, time-dependent outward current was identified in both cell-attached and excised membrane patches obtained from guinea pig ventricular myocytes. This macroscopic patch current was present in approximately 50% of patches studied and could be observed both in the presence and absence of unitary single channel activity (i.e., ATP-sensitive K+ channels). The time course of activation of the patch current resembled that of the whole cell delayed-rectifier K+ current (IK) recorded under similar ionic conditions, and the patch current and IK were activated over a similar membrane potential range. The time-dependent patch current could be eliminated when the Nernst potential for K+ equaled that of the pulse voltage. The patch current was inhibited by external addition of the tertiary ammonium compound LY 97241 (50 microM) and was augmented after internal application of the catalytic subunit of adenosine 3',5'-cyclic monophosphate-dependent protein kinase (500 nM). Deactivating tail currents with kinetics similar to those of IK could be recorded to cell-attached and excised patches. Unitary single channel events underlying the time-dependent patch current could not be resolved despite various attempts to increase single channel conductance. Thus our results suggest that a major component of delayed rectification in guinea pig ventricular cells is due to the activity of a high-density, extremely low conductance K+ channel.


1992 ◽  
Vol 262 (6) ◽  
pp. G1074-G1078 ◽  
Author(s):  
L. V. Baidan ◽  
A. V. Zholos ◽  
M. F. Shuba ◽  
J. D. Wood

The results of our research established the feasibility of applying patch-clamp methods in the study of the cellular neurophysiology of myenteric neurons enzymatically dissociated from adult guinea pig small intestine. Recording in current-clamp mode revealed two populations of neurons. One population discharged repetitively during depolarizing current pulses and displayed anodal-break excitation reminiscent of S/type 1 myenteric neurons. In the second population, spike discharge was limited to one or two spikes at the onset of depolarizing pulses and was similar to the behavior of AH/type 2 neurons. Recording in voltage-clamp mode revealed a complex of overlapping inward and outward whole cell currents. Fast and slow components of inward current were interpreted as sodium and calcium currents, respectively. Outward currents were blocked by cesium and consisted of components with properties of delayed rectifier current and A-type potassium current.


Sign in / Sign up

Export Citation Format

Share Document