scholarly journals Suramin inhibits the rise in cytoplasmic calcium concentration ([Ca2+]i) induced by glucose in single pancreatic b cells

1995 ◽  
Vol 67 ◽  
pp. 18
Author(s):  
Hiroshi Kuromi ◽  
Susumu Seino
1983 ◽  
Vol 103 (4) ◽  
pp. 552-557 ◽  
Author(s):  
Seiki Ito ◽  
Satoko Isemura ◽  
Eiichi Saitoh ◽  
Kazuo Sanada ◽  
Toshimitsu Suzuki ◽  
...  

Abstract. An immunohistochemical study using antisera against proline rich salivary peptide P-C and insulin, glucagon, somatostatin and pancreatic polypeptide antisera was carried out on the foetal pancreas at different stages and on the newborn infant's, infant's, child's and adult pancreas to examine the time at which salivary peptide P-C like immunoreactivity appeared in the human pancreas. Salivary peptide P-C like immunoreactive cells first appeared as a few scattered cells in the foetal pancreas after 16 weeks of gestation and gradually increased in numbers during gestation. The cells corresponded only to insulin immunoreactive cells in the foetal, newborn infant's, infant's, child's and adult pancreas. Only some of the insulin immunoreactive cells in the foetal pancreas contained salivary peptide P-C like immunoreactivity while the majority of those in the infant's pancreas and all those in the child's and adult pancreas did so. The findings, together with the fact that the full sequence of salivary peptide P-C is identical to the COOH-terminal 44 amino acid residues of Salivary Protein C, led to the possibility that peptide P-C like immunoreactivity in the human pancreatic B-cells was not a moiety of the precursor of insulin and pro-insulin, but a moiety of Salivary Protein C. It has been suggested that, in saliva, Salivary Protein C aids in maintenance of the calcium concentration. Based on the hypothesis that peptide P-C like immunoreactivity in the human pancreatic B-cells may play some role in insulin release through the maintenance of the calcium concentration, the present finding seems to explain the fact that the mechanism for insulin release in the foetal pancreas is immature in spite of sufficient biosynthesis of insulin.


1988 ◽  
Vol 85 (6) ◽  
pp. 1897-1901 ◽  
Author(s):  
J. A. Ledbetter ◽  
P. S. Rabinovitch ◽  
C. H. June ◽  
C. W. Song ◽  
E. A. Clark ◽  
...  

Nature ◽  
1991 ◽  
Vol 349 (6304) ◽  
pp. 77-79 ◽  
Author(s):  
Patrik Rorsman ◽  
Krister Bokvist ◽  
Carina Ämmälä ◽  
Per Arkhammar ◽  
Per-Olof Berggren ◽  
...  

1977 ◽  
Vol 27 (1) ◽  
pp. 289-301
Author(s):  
S.L. Howell ◽  
M. Tyhurst

The distribution of anionic sites on the membranes of rat pancreatic B cells and of their storage granules has been studied by the use of a visual probe of cationic ferritin. Membranes of isolated storage granules possessed a net negative charge which was apparently evenly distributed; the number of anionic sites was not markedly altered by prior incubation of the granules with neuraminidase or with 10(−5) to 2 X 10(−3) M calcium chloride. Distribution of charges along B cell plasma membranes was less uniform but was similarly unaffected by alterations of calcium concentration, or by neuraminidase treatment. However, during the fusion of plasma membrane and granule membrane which occurs in exocytosis, the emerging granule membrane was found to be devoid of anionic sites. The implications of these findings for the regulation of insulin secretion by exocytosis are discussed.


2000 ◽  
Vol 279 (1) ◽  
pp. F92-F101 ◽  
Author(s):  
Michel Bidet ◽  
Guy De Renzis ◽  
Sonia Martial ◽  
Isabelle Rubera ◽  
Michel Tauc ◽  
...  

Experiments were performed to characterize the P2 purinoceptor subtype responsible for cytoplasmic calcium mobilization in cells from the initial part of rabbit distal convoluted tubule (DCT). Free calcium concentration was measured in a DCT cell line (DC1) with the probe fura 2. Both ATP and UTP increased cytosolic Ca2+ concentration ([Ca2+]i; EC50 3 and 6 μM, respectively). The order of potency for nucleotide analogs was ATP = UTP > adenosine 5′- O-[thiotriphosphate] ≫ ADP > UDP, which is consistent with the pharmacology of the P2Y2 receptor subtype. The increased [Ca2+]iresponses to ATP and UTP were strongly inhibited by suramin. Pretreatment of cells with pertussis toxin (PTX) attenuated the action of both nucleotides. Inhibition of phospholipase C with U-73122 totally blocked the [Ca2+]i response to ATP. Thus ATP- and UTP-stimulated [Ca2+]i mobilization in DC1 cells appears to be mediated via the activation of P2Y2 purinoceptors coupled to a G protein mechanism that is partially sensitive to PTX. Calcium flux measurements showed that lanthanum- and nifedipine-sensitive calcium channels are involved in the [Ca2+]i response to ATP.


Sign in / Sign up

Export Citation Format

Share Document