scholarly journals Effects of TA-3090, a new 1,5-benzothiazepine Ca-antagonist, on the action potential and contractile force in the isolated right ventricular muscle of guinea pig and rabbit

1988 ◽  
Vol 46 ◽  
pp. 220
Author(s):  
Masao Koshiyama ◽  
Kiyoshi Miyazaki ◽  
Tomihiro Ikeo
2001 ◽  
Vol 280 (4) ◽  
pp. H1653-H1659 ◽  
Author(s):  
Anthony J. Baker ◽  
Charles H. Redfern ◽  
Mark D. Harwood ◽  
Paul C. Simpson ◽  
Bruce R. Conklin

Although increased Gi signaling has been associated with dilated cardiomyopathy in humans, its role is not clear. Our goal was to determine the effects of chronically increased Gi signaling on myocardial function. We studied transgenic mice that expressed a Gi-coupled receptor (Ro1) that was targeted to the heart and regulated by a tetracycline-controlled expression system. Ro1 expression for 8 wk resulted in abnormal contractions of right ventricular muscle strips in vitro. Ro1 expression reduced myocardial force by >60% (from 35 ± 3 to 13 ± 2 mN/mm2, P < 0.001). Nevertheless, sensitivity to extracellular Ca2+ was enhanced. The extracellular [Ca2+] resulting in half-maximal force was lower with Ro1 expression compared with control (0.41 ± 0.05 vs. 0.88 ± 0.05 mM, P < 0.001). Ro1 expression slowed both contraction and relaxation kinetics, increasing the twitch time to peak (143 ± 6 vs. 100 ± 4 ms in control, P < 0.001) and the time to half relaxation (124 ± 6 vs. 75 ± 6 ms in control, P < 0.001). Increased pacing frequency increased contractile force threefold in control myocardium ( P < 0.001) but caused no increase of force in Ro1-expressing myocardium. When stimulation was interrupted with rests, postrest force increased in control myocardium, but there was postrest decay of force in Ro1-expressing myocardium. These results suggest that defects in contractility mediated by Gi signaling may contribute to the development of dilated cardiomyopathy.


1979 ◽  
Vol 29 ◽  
pp. 156
Author(s):  
Motohatsu Fujiwara ◽  
Ikunobu Muramatsu ◽  
Shinobu Ikushima ◽  
Katsuro Ashida ◽  
Hiroyoshi Hidaka

2013 ◽  
Vol 91 (8) ◽  
pp. 586-592 ◽  
Author(s):  
Claudia Corici ◽  
Zsófia Kohajda ◽  
Attila Kristóf ◽  
András Horváth ◽  
László Virág ◽  
...  

Activators of the slow delayed rectifier K+ current (IKs) have been suggested as promising tools for suppressing ventricular arrhythmias due to prolongation of repolarization. Recently, L-364,373 (R-L3) was nominated to activate IKs in myocytes from several species; however, in some studies, it failed to activate IKs. One later study suggested opposite modulating effects from the R-L3 enantiomers as a possible explanation for this discrepancy. Therefore, we analyzed the effect of the RL-3 enantiomers on IKs in ventricular mammalian myocytes, by applying standard microelectrode and whole-cell patch-clamp techniques at 37 °C. We synthesized 2 substances, ZS_1270B (right) and ZS_1271B (left), the 2 enantiomers of R-L3. In rabbit myocytes, ZS_1270B enhanced the IKs tail current by approximately 30%, whereas ZS_1271B reduced IKs tails by 45%. In guinea pig right ventricular preparations, ZS_1270B shortened APD90 (action potential duration measured at 90% repolarization) by 12%, whereas ZS_1271B lengthened it by approximately 15%. We concluded that R-L3 enantiomers in the same concentration range indeed have opposite modulating effects on IKs, which may explain why the racemic drug R-L3 previously failed to activate IKs. ZS_1270B is a potent IKs activator, therefore, this substance is appropriate to test whether IKs activators are ideal tools to suppress ventricular arrhythmias originating from prolongation of action potentials.


1981 ◽  
Vol 31 (6) ◽  
pp. 1051-1060 ◽  
Author(s):  
Shinobu IKUSHIMA ◽  
Ikunobu MURAMATSU ◽  
Motohatsu FUJIWARA ◽  
Katsuro ASHIDA

Sign in / Sign up

Export Citation Format

Share Document