scholarly journals Transmembrane orientation of the mannose 6-phosphate receptor in isolated clathrin-coated vesicles.

1985 ◽  
Vol 260 (17) ◽  
pp. 9838-9842
Author(s):  
G G Sahagian ◽  
C J Steer
1993 ◽  
Vol 120 (1) ◽  
pp. 67-75 ◽  
Author(s):  
S Méresse ◽  
B Hoflack

We have previously shown that two serine residues present in two conserved regions of the bovine cation-independent mannose 6-phosphate receptor (CI-MPR) cytoplasmic domain are phosphorylated in vivo (residues 2421 and 2492 of the full length bovine CI-MPR precursor). In this study, we have used CHO cells to investigate the phosphorylation state of these two serines along the different steps of the CI-MPR exocytic and endocytic recycling pathways. Transport and phosphorylation of the CI-MPR in the biosynthetic pathway were examined using deoxymannojirimycin (dMM), a specific inhibitor of the cis-Golgi processing enzyme alpha-mannosidase I which leads to the accumulation of N-linked high mannose oligosaccharides on glycoproteins. Upon removal of dMM, normal processing to complex-type oligosaccharides (galactosylation and then sialylation) occurs on the newly synthesized glycoproteins, including the CI-MPR which could then be purified and analyzed on lectin affinity columns. Phosphorylation of the newly synthesized CI-MPR was concomitant with the sialylation of its oligosaccharides and appeared as a major albeit transient modification. Phosphorylation of the cell surface CI-MPR was examined during its endocytosis as well as its return to the Golgi using antibody tagging and exogalactosylation. The cell surface CI-MPR was not phosphorylated when it entered clathrin-coated pits or when it moved to the early and late endosomes. In contrast, the surface CI-MPR was phosphorylated when it had been resialylated upon its return to the trans-Golgi network. Subcellular fractionation experiments showed that the phosphorylated CI-MPR and the corresponding kinase were found in clathrin-coated vesicles. Collectively, these results indicate that phosphorylation of the two serines in the CI-MPR cytoplasmic domain is associated with a single step of transport of its recycling pathways and occurs when this receptor is in the trans-Golgi network and/or has left this compartment via clathrin-coated vesicles.


1999 ◽  
Vol 112 (22) ◽  
pp. 4089-4100 ◽  
Author(s):  
A. Pauloin ◽  
S.A. Tooze ◽  
I. Michelutti ◽  
S. Delpal ◽  
M. Ollivier-Bousquet

Clathrin coated vesicles were isolated from lactating rabbit mammary gland by differential centrifugation, centrifugation on (2)H2O-sucrose cushions and Sephacryl S-1000 chromatography. Mammary epithelial cells contain an unexpectedly high quantity of clathrin coated vesicles which appear heterogeneous in size, with a mean diameter of 95.9+/-10.5 nm and a density of 1.23 g × ml(−1). Analysis of clathrin coated vesicle adaptor composition by SDS-PAGE and western blot showed that only approximately 5–10% of total APs consist of AP-2 in isolated mammary gland clathrin coated vesicles whereas it represents approximately 70% of the total APs from bovine brain clathrin coated vesicles. Cargo molecules known to be transcytosed such as IgG, IgA, and the pIgR were detected in the clathrin coated vesicles, indicating that part of this vesicle population is involved in transcytotic pathways. However, as the vast majority of the clathrin coated vesicles contained AP-1, it was likely that these clathrin coated vesicles were involved in the secretory pathway. Relatively high quantities of furin and cation-independent mannose 6-phosphate receptor were detected in mammary clathrin coated vesicles. By immuno electron microscopy, AP-1 and the cation-independent mannose 6-phosphate receptor were localized in Golgi-associated vesicles and on the membrane of secretory vesicles. The presence of AP-1 in the coat patches on the membrane of secretory vesicles containing casein micelles, and the presence of alpha(s1)-casein in mammary gland clathrin coated vesicles, support a role for AP-1 in the maturation of secretory vesicles. Our data pinpoint the importance of clathrin coated vesicles in lactating mammary epithelial cells, and suggest these vesicles are involved in the transcytotic pathway, in sorting at the trans-Golgi network and in the biogenesis of casein-containing secretory vesicles.


1984 ◽  
Vol 99 (1) ◽  
pp. 320-326 ◽  
Author(s):  
W J Brown ◽  
E Constantinescu ◽  
M G Farquhar

The distribution of Man-6-P receptors was determined by immunoperoxidase cytochemistry in Clone 9 hepatocytes cultured in the presence or absence of tunicamycin and chloroquine, agents that perturb lysosomal enzyme sorting and lead to their secretion. In control (untreated) cells, receptors were localized in cis Golgi cisternae, coated vesicles, and in endosomes or lysosomes. After tunicamycin treatment, receptors were found in coated vesicles lined up along the cis cisternae but were not detected in endosomes or lysosomes. After chloroquine treatment, receptors were localized in large vacuolated endosomes or lysosomes but were not usually detected in Golgi cisternae or in coated vesicles. These results demonstrate a redistribution of receptors along the normal Man-6-P-dependent sorting pathway after these treatments. In ligand-deficient (tunicamycin-treated) cells, immunoreactive receptors accumulate at the presumptive sorting site in the cis Golgi and are depleted from endosomes and lysosomes. When the intralysosomal pH is increased (by chloroquine treatment) preventing ligand-receptor dissociation, receptors accumulate at the presumptive delivery site (lysosomes and endosomes) and are depleted from the cis Golgi region. The findings also suggest that (a) ligand binding triggers movement of the receptor to endosomes or lysosomes, and (b) ligand dissociation triggers their movement back to the cis Golgi region.


1983 ◽  
Vol 258 (4) ◽  
pp. 2628-2633 ◽  
Author(s):  
C H Campbell ◽  
R E Fine ◽  
J Squicciarini ◽  
L H Rome

1997 ◽  
Vol 137 (2) ◽  
pp. 335-345 ◽  
Author(s):  
Roland Le Borgne ◽  
Bernard Hoflack

The transport of the two mannose 6-phosphate receptors (MPRs) from the secretory pathway to the endocytic pathway is mediated by carrier vesicles coated with the AP-1 Golgi-specific assembly protein and clathrin. Using an in vitro assay that reconstitutes the ARF-1–dependent translocation of cytosolic AP-1 onto membranes of the TGN, we have previously reported that the MPRs are key components for the efficient recruitment of AP-1 (Le Borgne, R., G. Griffiths, and B. Hoflack. 1996. J. Biol. Chem. 271:2162–2170). Using a polyclonal antibody against the mouse γ-adaptin, we have now examined the steady state distribution of AP-1 after subcellular fractionation of mouse fibroblasts lacking both MPRs or reexpressing physiological levels of either MPR. We report that the amount of AP-1 bound to membranes and associated with clathrin-coated vesicles depends on the expression level of the MPRs and on the integrity of their cytoplasmic domains. Thus, these results indicate that the concentration of the MPRs, i.e., the major transmembrane proteins sorted toward the endosomes, determines the number of clathrin-coated vesicles formed in the TGN.


Author(s):  
G.P.A. Vigers ◽  
R.A. Crowther ◽  
B.M.F. Pearse

Clathrin forms the polyhedral cage of coated vesicles, which mediate the transfer of selected membrane components within eukaryotic cells. Clathrin cages and coated vesicles have been extensively studied by electron microscopy of negatively stained preparations and shadowed specimens. From these studies the gross morphology of the outer part of the polyhedral coat has been established and some features of the packing of clathrin trimers into the coat have also been described. However these previous studies have not revealed any internal details about the position of the terminal domain of the clathrin heavy chain, the location of the 100kd-50kd accessory coat proteins or the interactions of the coat with the enclosed membrane.


Sign in / Sign up

Export Citation Format

Share Document