The majority of clathrin coated vesicles from lactating rabbit mammary gland arises from the secretory pathway

1999 ◽  
Vol 112 (22) ◽  
pp. 4089-4100 ◽  
Author(s):  
A. Pauloin ◽  
S.A. Tooze ◽  
I. Michelutti ◽  
S. Delpal ◽  
M. Ollivier-Bousquet

Clathrin coated vesicles were isolated from lactating rabbit mammary gland by differential centrifugation, centrifugation on (2)H2O-sucrose cushions and Sephacryl S-1000 chromatography. Mammary epithelial cells contain an unexpectedly high quantity of clathrin coated vesicles which appear heterogeneous in size, with a mean diameter of 95.9+/-10.5 nm and a density of 1.23 g × ml(−1). Analysis of clathrin coated vesicle adaptor composition by SDS-PAGE and western blot showed that only approximately 5–10% of total APs consist of AP-2 in isolated mammary gland clathrin coated vesicles whereas it represents approximately 70% of the total APs from bovine brain clathrin coated vesicles. Cargo molecules known to be transcytosed such as IgG, IgA, and the pIgR were detected in the clathrin coated vesicles, indicating that part of this vesicle population is involved in transcytotic pathways. However, as the vast majority of the clathrin coated vesicles contained AP-1, it was likely that these clathrin coated vesicles were involved in the secretory pathway. Relatively high quantities of furin and cation-independent mannose 6-phosphate receptor were detected in mammary clathrin coated vesicles. By immuno electron microscopy, AP-1 and the cation-independent mannose 6-phosphate receptor were localized in Golgi-associated vesicles and on the membrane of secretory vesicles. The presence of AP-1 in the coat patches on the membrane of secretory vesicles containing casein micelles, and the presence of alpha(s1)-casein in mammary gland clathrin coated vesicles, support a role for AP-1 in the maturation of secretory vesicles. Our data pinpoint the importance of clathrin coated vesicles in lactating mammary epithelial cells, and suggest these vesicles are involved in the transcytotic pathway, in sorting at the trans-Golgi network and in the biogenesis of casein-containing secretory vesicles.

2000 ◽  
Vol 20 (23) ◽  
pp. 9092-9101 ◽  
Author(s):  
Ratna K. Vadlamudi ◽  
Rui-An Wang ◽  
Amjad H. Talukder ◽  
Liana Adam ◽  
Randy Johnson ◽  
...  

ABSTRACT Heregulin β1 (HRG), a combinatorial ligand for human growth factor receptors 3 and 4, is a regulatory polypeptide that promotes the differentiation of mammary epithelial cells into secretory lobuloalveoli. Emerging evidence suggests that the processes of secretory pathways, such as biogenesis and trafficking of vesicles in neurons and adipose cells, are regulated by the Rab family of low-molecular-weight GTPases. In this study, we identified Rab3A as a gene product induced by HRG. Full-length Rab3A was cloned from a mammary gland cDNA library. We demonstrated that HRG stimulation of human breast cancer cells and normal breast epithelial cells induces the expression of Rab3A protein and mRNA in a cycloheximide-independent manner. HRG-mediated induction of Rab3A expression was blocked by an inhibitor of phosphatidylinositol 3-kinase but not by inhibitors of mitogen-activated protein kinases p38MAPK and p42/44MAPK. Human breast epithelial cells also express other components of regulated vesicular traffic, such as rabphilin 3A, Doc2, and syntaxin. Rab3A was predominantly localized in the cytosol, and HRG stimulation of the epithelial cells also raised the level of membrane-bound Rab3A. HRG treatment induced a profound alteration in the cell morphology in which cells displayed neuron-like membrane extensions that contained Rab3A-coated, vesicle-like structures. In addition, HRG also promoted the secretion of cellular proteins from the mammary epithelial cells. The ability of HRG to modify exocytosis was verified by using a growth hormone transient-transfection system. Analysis of mouse mammary gland development revealed the expression of Rab3A in mammary epithelial cells. Furthermore, expression of the HRG transgene in Harderian tumors in mice also enhanced the expression of Rab3A. These observations provide new evidence of the existence of a Rab3A pathway in mammary epithelial cells and suggest that it may play a role in vesicle trafficking and secretion of proteins from epithelial cells in response to stimulation by the HRG expressed within the mammary mesenchyma.


1992 ◽  
Vol 102 (2) ◽  
pp. 239-247 ◽  
Author(s):  
M.E. Rennison ◽  
S.E. Handel ◽  
C.J. Wilde ◽  
R.D. Burgoyne

Disruption of microtubules has been shown to reduce protein secretion from lactating mammary epithelial cells. To investigate the involvement of microtubules in the secretory pathway in these cells we have examined the effect of nocodazole on protein secretion from mammary epithelial cells derived from the lactating mouse. Mouse mammary cells have extensive microtubule networks and 85% of their tubulin was in a polymeric form. Treatment with 1 micrograms/ml nocodazole converted most of the tubulin into a soluble form. In a continuous labelling protocol it was found that nocodazole did not interfere with protein synthesis but over a 5 h period secretion was markedly inhibited. To determine whether the inhibition was at the level of early or late stages of the secretory pathway mammary cells were pulse-labelled for 1 h to label protein throughout the secretory pathway before nocodazole treatment. When secretion was subsequently assayed it was found to be slower and only partially inhibited. These findings suggest that the major effect of nocodazole is on an early stage of the secretory pathway and that microtubules normally facilitate vesicle transport to the plasma membrane. An involvement of microtubules in vesicle transport to the plasma membrane is consistent with an observed accumulation of casein vesicles in nocodazole-treated cells. Exocytosis stimulated by the calcium ionophore ionomycin was unaffected by nocodazole treatment. We conclude from these results that the major effect of nocodazole is at an early stage of the secretory pathway, one possible target being casein vesicle biogenesis in the trans-Golgi network.


2021 ◽  
pp. 105367
Author(s):  
Peerzada Tajamul Mumtaz ◽  
Qamar Taban ◽  
Basharat Bhat ◽  
Syed Mudasir Ahmad ◽  
Mashooq Ahmad Dar ◽  
...  

2021 ◽  
Author(s):  
Zhiyun Hao ◽  
Yuzhu Luo ◽  
Jiqing Wang ◽  
Jon Hickford ◽  
Huitong Zhou ◽  
...  

In our previous studies, microRNA-432 (miR-432) was found to be one of differentially expressed miRNAs in ovine mammary gland between the two breeds of lactating sheep with different milk production...


2005 ◽  
Vol 45 (8) ◽  
pp. 757 ◽  
Author(s):  
C. Gray ◽  
Y. Strandberg ◽  
L. Donaldson ◽  
R. L. Tellam

Innate immunity plays a vital role in the protection of the bovine mammary gland against mastitis. Until recently, the migration of effector cells such as neutrophils and monocytes into the mammary gland was thought to provide the only defence against invading pathogens. However, mammary epithelial cells may also play an important role in the immune response, contributing to the innate defence of the mammary tissue through secretion of antimicrobial peptides and attraction of circulating immune effector cells. This paper reviews the innate immune pathways in mammary epithelial cells and examines their role in the initiation of an innate immune response to Gram-positive and Gram-negative bacteria.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3194
Author(s):  
Yutaka Suzuki ◽  
Sachi Chiba ◽  
Koki Nishihara ◽  
Keiichi Nakajima ◽  
Akihiko Hagino ◽  
...  

Epithelial barrier function in the mammary gland acts as a forefront of the defense mechanism against mastitis, which is widespread and a major disorder in dairy production. Chemerin is a chemoattractant protein with potent antimicrobial ability, but its role in the mammary gland remains unelucidated. The aim of this study was to determine the function of chemerin in mammary epithelial tissue of dairy cows in lactation or dry-off periods. Mammary epithelial cells produced chemerin protein, and secreted chemerin was detected in milk samples. Chemerin treatment promoted the proliferation of cultured bovine mammary epithelial cells and protected the integrity of the epithelial cell layer from hydrogen peroxide (H2O2)-induced damage. Meanwhile, chemerin levels were higher in mammary tissue with mastitis. Tumor necrosis factor alpha (TNF-α) strongly upregulated the expression of the chemerin-coding gene (RARRES2) in mammary epithelial cells. Therefore, chemerin was suggested to support mammary epithelial cell growth and epithelial barrier function and to be regulated by inflammatory stimuli. Our results may indicate chemerin as a novel therapeutic target for diseases in the bovine mammary gland.


2004 ◽  
Vol 15 (5) ◽  
pp. 2302-2311 ◽  
Author(s):  
Yijun Yi ◽  
Anne Shepard ◽  
Frances Kittrell ◽  
Biserka Mulac-Jericevic ◽  
Daniel Medina ◽  
...  

This study demonstrated, for the first time, the following events related to p19ARFinvolvement in mammary gland development: 1) Progesterone appears to regulate p19ARFin normal mammary gland during pregnancy. 2) p19ARFexpression levels increased sixfold during pregnancy, and the protein level plateaus during lactation. 3) During involution, p19ARFprotein level remained at high levels at 2 and 8 days of involution and then, declined sharply at day 15. Absence of p19ARFin mammary epithelial cells leads to two major changes, 1) a delay in the early phase of involution concomitant with downregulation of p21Cip1and decrease in apoptosis, and 2) p19ARFnull cells are immortal in vivo measured by serial transplantion, which is partly attributed to complete absence of p21Cip1compared with WT cells. Although, p19ARFis dispensable in mammary alveologenesis, as evidenced by normal differentiation in the mammary gland of pregnant p19ARFnull mice, the upregulation of p19ARFby progesterone in the WT cells and the weakness of p21Cip1in mammary epithelial cells lacking p19ARFstrongly suggest that the functional role(s) of p19ARFin mammary gland development is critical to sustain normal cell proliferation rate during pregnancy and normal apoptosis in involution possibly through the p53-dependent pathway.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yixin Huang ◽  
Liuhong Shen ◽  
Jing Jiang ◽  
Qipin Xu ◽  
Zhengzhong Luo ◽  
...  

AbstractBovine mammary epithelial cells (bMECs) are the main cells of the dairy cow mammary gland. In addition to their role in milk production, they are effector cells of mammary immunity. However, there is little information about changes in metabolites of bMECs when stimulated by lipopolysaccharide (LPS). This study describes a metabolomics analysis of the LPS-stimulated bMECs to provide a basis for the identification of potential diagnostic screening biomarkers and possible treatments for bovine mammary gland inflammation. In the present study, bMECs were challenged with 500 ng/mL LPS and samples were taken at 0 h, 12 h and 24 h post stimulation. Metabolic changes were investigated using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF MS) with univariate and multivariate statistical analyses. Clustering and metabolic pathway changes were established by MetaboAnalyst. Sixty-three differential metabolites were identified, including glycerophosphocholine, glycerol-3-phosphate, L-carnitine, L-aspartate, glutathione, prostaglandin G2, α-linolenic acid and linoleic acid. They were mainly involved in eight pathways, including D-glutamine and D-glutamic acid metabolism; linoleic acid metabolism; α-linolenic metabolism; and phospholipid metabolism. The results suggest that bMECs are able to regulate pro-inflammatory, anti-inflammatory, antioxidation and energy-producing related metabolites through lipid, antioxidation and energy metabolism in response to inflammatory stimuli.


2010 ◽  
Vol 82 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Yoshihisa OHTANI ◽  
Tomo YONEZAWA ◽  
Sang-Houn SONG ◽  
Tatsuyuki TAKAHASHI ◽  
Astrid ARDIYANTI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document