scholarly journals Chromatin structure of the chicken beta-globin gene region. Sensitivity to DNase I, micrococcal nuclease, and DNase II.

1982 ◽  
Vol 257 (13) ◽  
pp. 7730-7736
Author(s):  
W I Wood ◽  
G Felsenfeld
Blood ◽  
1993 ◽  
Vol 81 (10) ◽  
pp. 2781-2790
Author(s):  
DE Fleenor ◽  
RE Kaufman

The members of the human beta globin gene family are flanked by strong DNase I hypersensitive sites. The collection of sites 5' to the epsilon globin gene is able to confer high levels of expression of linked globin genes, but a function has not been assigned to the site 3' to the beta globin gene (3'HS1). Our analysis of this DNase I super hypersensitive site shows that the region is composed of multiple DNase I sites. By examination of the DNA sequence, we have determined that the region is very A/T-rich and contains topoisomerase II recognition sequences, as well as several consensus binding motifs for GATA-1 and AP-1/NF-E2. Gel mobility shift assays indicate that the region can interact in vitro with GATA-1 and AP-1/NF-E2, and functional studies show that the region serves as a scaffold attachment region in both erythroid and nonerythroid cell lines. Whereas many of the physical features of 3'HS1 are shared by 5'HS2 (a component of the 5' locus control region), transient expression studies show that 3' HS1 does not share the erythroid-specific enhancer activity exhibited by 5'HS2.


Blood ◽  
1982 ◽  
Vol 59 (4) ◽  
pp. 828-831
Author(s):  
JF Balsley ◽  
E Rappaport ◽  
E Schwartz ◽  
S Surrey

We report restriction endonuclease analysis of the gamma-delta-beta- globin gene region in a mother and child heterozygous for G gamma-beta +-hereditary persistence of fetal hemoglobin (HPFH). The affected chromosome in these persons directs the production of G gamma-chains and beta-chains but not A gamma-chains. DNA was digested with several restriction enzymes and was examined for gamma, delta, beta sequences by blot hybridization. Only normal digestion fragments were present. By sensitive methods, we were unable to detect a deletion in the entire gamma-delta-beta-globin gene region of the affected chromosome, indicating that in this family, G gamma-beta +-HPFH is not due to a large deletion.


1996 ◽  
Vol 16 (11) ◽  
pp. 6055-6064 ◽  
Author(s):  
Q H Gong ◽  
J C McDowell ◽  
A Dean

Much of our understanding of the process by which enhancers activate transcription has been gained from transient-transfection studies in which the DNA is not assembled with histones and other chromatin proteins as it is in the cell nucleus. To study the activation of a mammalian gene in a natural chromatin context in vivo, we constructed a minichromosome containing the human epsilon-globin gene and portions of the beta-globin locus control region (LCR). The minichromosomes replicate and are maintained at stable copy number in human erythroid cells. Expression of the minichromosomal epsilon-globin gene requires the presence of beta-globin LCR elements in cis, as is the case for the chromosomal gene. We determined the chromatin structure of the epsilon-globin gene in both the active and inactive states. The transcriptionally inactive locus is covered by an array of positioned nucleosomes extending over 1,400 bp. In minichromosomes with a (mu)LCR or DNase I-hypersensitive site 2 (HS2) which actively transcribe the epsilon-globin gene, the nucleosome at the promoter is altered or disrupted while positioning of nucleosomes in the rest of the locus is retained. All or virtually all minichromosomes are simultaneously hypersensitive to DNase I both at the promoter and at HS2. Transcriptional activation and promoter remodeling, as well as formation of the HS2 structure itself, depended on the presence of the NF-E2 binding motif in HS2. The nucleosome at the promoter which is altered upon activation is positioned over the transcriptional elements of the epsilon-globin gene, i.e., the TATA, CCAAT, and CACCC elements, and the GATA-1 site at -165. The simple availability of erythroid transcription factors that recognize these motifs is insufficient to allow expression. As in the chromosomal globin locus, regulation also occurs at the level of chromatin structure. These observations are consistent with the idea that one role of the beta-globin LCR is to maintain promoters free of nucleosomes. The restricted structural change observed upon transcriptional activation may indicate that the LCR need only make a specific contact with the proximal gene promoter to activate transcription.


2005 ◽  
Vol 25 (16) ◽  
pp. 7033-7041 ◽  
Author(s):  
Xiangdong Fang ◽  
Jin Sun ◽  
Ping Xiang ◽  
Man Yu ◽  
Patrick A. Navas ◽  
...  

ABSTRACT Deletion of the 234-bp core element of the DNase I hypersensitive site 3 (5′HS3) of the locus control region (LCR) in the context of a human beta-globin locus yeast artificial chromosome (β-YAC) results in profound effects on globin gene expression in transgenic mice. In contrast, deletion of a 2.3-kb 5′HS3 region, which includes the 234-bp core sequence, has a much milder phenotype. Here we report the effects of these deletions on chromatin structure in the beta-globin locus of adult erythroblasts. The 234-bp 5′HS3 deletion abolished histone acetylation throughout the β-globin locus; recruitment of RNA polymerase II (pol II) to the LCR and beta-globin gene promoter was reduced to a basal level; and formation of all the 5′ DNase I hypersensitive sites of the LCR was disrupted. The 2.3-kb 5′HS3 deletion mildly reduced the level of histone acetylation but did not change the profile across the whole locus; the 5′ DNase I hypersensitive sites of the LCR were formed, but to a lesser extent; and recruitment of pol II was reduced, but only marginally. These data support the hypothesis that the LCR forms a specific chromatin structure and acts as a single entity. Based on these results we elaborate on a model of LCR chromatin architecture which accommodates the distinct phenotypes of the 5′HS3 and HS3 core deletions.


Sign in / Sign up

Export Citation Format

Share Document