scholarly journals Evidence for intramolecular disulfide bond shuffling in the folding of mutant human lysozyme.

1991 ◽  
Vol 266 (10) ◽  
pp. 6456-6461 ◽  
Author(s):  
Y Taniyama ◽  
R Kuroki ◽  
F Omura ◽  
C Seko ◽  
M Kikuchi
2001 ◽  
Vol 43 (4) ◽  
pp. 413-419 ◽  
Author(s):  
Koji Inaka ◽  
Eiko Kanaya ◽  
Masakazu Kikuchi ◽  
Kunio Miki

2014 ◽  
Vol 70 (4) ◽  
pp. 1005-1014 ◽  
Author(s):  
Beatriz G. Guimarães ◽  
Djemel Hamdane ◽  
Christophe Lechauve ◽  
Michael C. Marden ◽  
Béatrice Golinelli-Pimpaneau

Neuroglobin plays an important function in the supply of oxygen in nervous tissues. In human neuroglobin, a cysteine at position 46 in the loop connecting the C and D helices of the globin fold is presumed to form an intramolecular disulfide bond with Cys55. Rupture of this disulfide bridge stabilizes bi-histidyl haem hexacoordination, causing an overall decrease in the affinity for oxygen. Here, the first X-ray structure of wild-type human neuroglobin is reported at 1.74 Å resolution. This structure provides a direct observation of two distinct conformations of the CD region containing the intramolecular disulfide link and highlights internal cavities that could be involved in ligand migration and/or are necessary to enable the conformational transition between the low and high oxygen-affinity states following S—S bond formation.


2010 ◽  
Vol 192 (21) ◽  
pp. 5657-5662 ◽  
Author(s):  
Kazuyuki Tao ◽  
Shoji Watanabe ◽  
Shin-ichiro Narita ◽  
Hajime Tokuda

ABSTRACT LolA accommodates the acyl chains of lipoproteins in its hydrophobic cavity and shuttles between the inner and outer membranes through the hydrophilic periplasm to place lipoproteins in the outer membrane. The LolA(I93C/F140C) derivative, in which Cys replaces Ile at position 93 and Phe at position 140, strongly inhibited growth in the absence of a reducing agent because of the lethal intramolecular disulfide bond between the two Cys residues. Expression of I93C/F140C was found to activate the Cpx two-component system, which responds to cell envelope stress. The inhibition of growth by I93C/F140C was partly suppressed by overproduction of LolCDE, which is an ATP-binding cassette transporter and mediates the transfer of lipoproteins from the inner membrane to LolA. A substantial portion of the oxidized form, but not the reduced one, of I93C/F140C expressed on LolCDE overproduction was recovered in the membrane fraction, whereas wild-type LolA was localized in the periplasm even when LolCDE was overproduced. Moreover, LolCDE overproduction stabilized I93C/F140C and therefore caused an increase in its level. Taken together, these results indicate that oxidized I93C/F140C stably binds to LolCDE, which causes strong envelope stress.


Sign in / Sign up

Export Citation Format

Share Document