scholarly journals Demonstration by radiation inactivation that insulin alters the structure of the insulin receptor in rat liver membranes.

1981 ◽  
Vol 256 (15) ◽  
pp. 7719-7722 ◽  
Author(s):  
J.T. Harmon ◽  
E.S. Kempner ◽  
C.R. Kahn
2006 ◽  
Vol 293 (1-2) ◽  
pp. 35-46 ◽  
Author(s):  
Rodrigo S. Villarreal ◽  
Sergio E. Alvarez ◽  
Maximiliano Juri Ayub ◽  
Gladys M. Ciuffo

1990 ◽  
Vol 271 (1) ◽  
pp. 99-105 ◽  
Author(s):  
J L Treadway ◽  
B D Morrison ◽  
J A Wemmie ◽  
I Frias ◽  
T O'Hare ◽  
...  

Previous studies have indicated that turkey erythrocyte and rat liver membranes contain endogenous alpha beta heterodimeric insulin receptors in addition to the disulphide-linked alpha 2 beta 2 heterotetrameric complexes characteristic of most cell types. We utilized 125I-insulin affinity cross-linking to examine the structural properties of insulin receptors from rat liver and turkey erythrocyte membranes prepared in the absence and presence of sulphydryl alkylating agents. Rat liver membranes prepared in the absence of sulphydryl alkylating agents displayed specific labelling of Mr 400,000 and 200,000 bands, corresponding to the alpha 2 beta 2 heterotetrameric and alpha beta heterodimeric insulin receptor complexes respectively. In contrast, affinity cross-linking of membranes prepared with iodoacetamide (IAN) or N-ethylmaleimide identified predominantly the alpha 2 beta 2 heterotetrameric insulin receptor complex. Similarly, affinity cross-linking and solubilization of intact turkey erythrocytes in the presence of IAN resulted in exclusive labelling of the alpha 2 beta 2 heterotetrameric insulin receptor complex, whereas in the absence of IAN both alpha 2 beta 2 and alpha beta species were observed. Turkey erythrocyte alpha 2 beta 2 heterotetrameric insulin receptors from IAN-protected membranes displayed a 3-4-fold stimulation of beta subunit autophosphorylation and substrate phosphorylation by insulin, equivalent to that observed in intact human placenta insulin receptors. Turkey erythrocyte alpha beta heterodimeric insulin receptors, prepared by defined pH/dithiothreitol treatment of IAN-protected membranes, were also fully competent in insulin-stimulated protein kinase activity compared with alpha beta heterodimeric human placenta receptors. In contrast, endogenous turkey erythrocyte alpha beta heterodimeric insulin receptors displayed basal protein kinase activity which was insulin-insensitive. These data indicate that native turkey erythrocyte and rat liver insulin receptors are structurally and functionally similar to alpha 2 beta 2 heterotetrameric human placenta insulin receptors. The alpha beta heterodimeric insulin receptors previously identified in these tissues most likely resulted from disulphide bond reduction and denaturation of the alpha 2 beta 2 holoreceptor complexes during membrane preparation.


Endocrinology ◽  
1982 ◽  
Vol 110 (6) ◽  
pp. 1922-1925 ◽  
Author(s):  
HANS DERUYTER ◽  
KENNETH D. BURMAN ◽  
LEONARD WARTOFSKY ◽  
SIMEON I. TAYLOR

Diabetes ◽  
1985 ◽  
Vol 34 (10) ◽  
pp. 1025-1030 ◽  
Author(s):  
M. N. Khan ◽  
S. Savoie ◽  
R. J. Khan ◽  
J. J. Bergeron ◽  
B. I. Posner

1989 ◽  
Vol 264 (22) ◽  
pp. 12931-12940 ◽  
Author(s):  
M N Khan ◽  
G Baquiran ◽  
C Brule ◽  
J Burgess ◽  
B Foster ◽  
...  

1988 ◽  
Vol 256 (3) ◽  
pp. 893-902 ◽  
Author(s):  
M J King ◽  
G J Sale

Calmodulin-dependent protein phosphatase has been proposed to be an important phosphotyrosyl-protein phosphatase. The ability of the enzyme to attack autophosphorylated insulin receptor was examined and compared with the known ability of the enzyme to act on autophosphorylated epidermal-growth-factor (EGF) receptor. Purified calmodulin-dependent protein phosphatase was shown to catalyse the complete dephosphorylation of phosphotyrosyl-(insulin receptor). When compared at similar concentrations, 32P-labelled EGF receptor was dephosphorylated at greater than 3 times the rate of 32P-labelled insulin receptor; both dephosphorylations exhibited similar dependence on metal ions and calmodulin. Native phosphotyrosyl-protein phosphatases in cell extracts were also characterized. With rat liver, heart or brain, most (75%) of the native phosphatase activity against both 32P-labelled insulin and EGF receptors was recovered in the particulate fraction of the cell, with only 25% in the soluble fraction. This subcellular distribution contrasts with results of previous studies using artificial substrates, which found most of the phosphotyrosyl-protein phosphatase activity in the soluble fraction of the cell. Properties of particulate and soluble phosphatase activity against 32P-labelled insulin and EGF receptors are reported. The contribution of calmodulin-dependent protein phosphatase activity to phosphotyrosyl-protein phosphatase activity in cell fractions was determined by utilizing the unique metal-ion dependence of calmodulin-dependent protein phosphatase. Whereas Ni2+ (1 mM) markedly activated the calmodulin-dependent protein phosphatase, it was found to inhibit potently both particulate and soluble phosphotyrosyl-protein phosphatase activity. In fractions from rat liver, brain and heart, total phosphotyrosyl-protein phosphatase activity against both 32P-labelled receptors was inhibited by 99.5 +/- 6% (mean +/- S.E.M., 30 observations) by Ni2+. Results of Ni2+ inhibition studies were confirmed by other methods. It is concluded that in cell extracts phosphotyrosyl-protein phosphatases other than calmodulin-dependent protein phosphatase are the major phosphotyrosyl-(insulin receptor) and -(EGF receptor) phosphatases.


Sign in / Sign up

Export Citation Format

Share Document