egf receptors
Recently Published Documents


TOTAL DOCUMENTS

378
(FIVE YEARS 12)

H-INDEX

64
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Zahra Sepahdar ◽  
Mehran Miroliaei ◽  
Saeid Bouzari ◽  
Vahid Khalaj ◽  
Mona Salimi

Bacterial outer membrane vesicles (OMVs) have recently drawn a great deal of attention due to their therapeutic efficiency and ability to target specific cells. In the present study, we sought to probe engineered OMVs as novel and promising carriers to target breast cancer cells. Following the fusion of the affiEGFR-GALA structure to the C-terminal of ClyA as an anchor protein, the ClyA-affiEGFR-GALA construct was successfully expressed on the surface of ∆msbB/∆pagP E. coli W3110-derived OMVs. Morphological features of the engineered and wild-type OMVs were identical. The engineered OMVs induced no endotoxicity, cytotoxicity, or immunogenicity, indicating the safety of their application. These OMVs could specifically bind to EGF receptors of MDA-MB-468 cells expressing high levels of EGFR and not to those with low levels of EGFR (HEK293T cells). Interestingly, despite a lower binding affinity of the engineered OMVs relative to the positive control Cetuximab, it was strong enough to identify these cells. Moreover, confocal microscopy revealed no uptake of the modified OMVs by the EGFR-overexpressing cells in the presence of EGFR competitors. These results suggest that OMVs might internalize into the cells with EGF receptors, as no OMVs entered the cells with any EGFR expression or those pretreated with EGF or Cetuximab. Regarding the EGFR-binding affinity of the engineered OMVs and their cellular uptake, they are presented here as a potential carrier for cell-specific drug delivery to treat a wide variety of cancer cells. Interestingly, the engineered OMVs are capable of reaching the cytoplasm while escaping the endosome due to the incorporation of a fusogenic GALA peptide in the construct.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Song ◽  
Zunyu Xiao ◽  
Kai Wang ◽  
Xiance Wang ◽  
Chongqing Zhang ◽  
...  

2021 ◽  
Vol 14 (683) ◽  
pp. eabd9943
Author(s):  
Yannick Brüggemann ◽  
Lisa S. Karajannis ◽  
Angel Stanoev ◽  
Wayne Stallaert ◽  
Philippe I. H. Bastiaens

Growth factor–dependent vesicular dynamics allow cells to regulate the spatial distribution of growth factor receptors and thereby their coupling to downstream signaling effectors that guide cellular responses. We found that the ErbB ligands epidermal growth factor (EGF) and heregulin (HRG) generated distinct spatiotemporal patterns of cognate receptor activities to activate distinct subcellular pools of the extracellular signal–regulated kinase (Erk). Sustained plasma membrane activity of the receptor tyrosine kinases ErbB2/ErbB3 signaled to Erk complexed with the scaffold protein KSR to promote promigratory EphA2 phosphorylation and cellular motility upon HRG stimulation. In contrast, receptor-saturating EGF stimuli caused proliferation-inducing transient activation of cytoplasmic Erk due to the rapid internalization of EGF receptors (EGFR or ErbB1) toward endosomes. Paradoxically, promigratory signaling mediated by Erk complexed to KSR was sustained at low EGF concentrations by vesicular recycling that maintained steady-state amounts of active, phosphorylated EGFR at the plasma membrane. Thus, the effect of ligand identity and concentration on determining ErbB vesicular dynamics constitutes a mechanism by which cells can transduce growth factor composition through spatially distinct Erk pools to enable functionally diverse cellular responses.


2021 ◽  
Vol 21 (5) ◽  
pp. 3028-3034
Author(s):  
Xiuli Qi ◽  
Yuchao Huan ◽  
Hong Si ◽  
Jianfei Zou ◽  
Zhen Mu

This study’s objective is to analyze the effect of epidermal growth factor (EGF) nanoparticles on the healing of diabetic skin wounds and also, simultaneously, to investigate the mechanism of EGF nanoparticles to promote healing. In this manuscript, EGF nanoparticles were prepared, and also the drug loading rate of EGF nanoparticles was measured. In the meantime, a diabetic skin wound model was prepared with the use of rats. Then, the rats were split into four groups: EGF nanogroup, EGF group, empty particle group, and control group. Additionally, the results indicate that this study was successful in preparing EGF nanoparticles with a stable performance, and the drug was released for 24 hours. The wound healing in the EGF nanoparticle group was quicker than that in the EGF group. Furthermore, the area of EGF receptor-positive cells in the wound surface of the EGF nanogroup was higher than that of the EGF group, with the results demonstrating that EGF nanoparticles upregulated the expression of EGF receptors in wound surface cells, promoted wound surface healing, and had better efficacy than EGF.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
H. M. York ◽  
A. Patil ◽  
U. K. Moorthi ◽  
A. Kaur ◽  
A. Bhowmik ◽  
...  

AbstractThe endosomal system provides rich signal processing capabilities for responses elicited by growth factor receptors and their ligands. At the single cell level, endosomal trafficking becomes a critical component of signal processing, as exemplified by the epidermal growth factor (EGF) receptors. Activated EGFRs are trafficked to the phosphatase-enriched peri-nuclear region (PNR), where they are dephosphorylated and degraded. The details of the mechanisms that govern the movements of stimulated EGFRs towards the PNR, are not completely known. Here, exploiting the advantages of lattice light-sheet microscopy, we show that EGFR activation by EGF triggers a transient calcium increase causing a whole-cell level redistribution of Adaptor Protein, Phosphotyrosine Interacting with PH Domain And Leucine Zipper 1 (APPL1) from pre-existing endosomes within one minute, the rebinding of liberated APPL1 directly to EGFR, and the dynein-dependent translocation of APPL1-EGF-bearing endosomes to the PNR within ten minutes. The cell spanning, fast acting network that we reveal integrates a cascade of events dedicated to the cohort movement of activated EGF receptors. Our findings support the intriguing proposal that certain endosomal pathways have shed some of the stochastic strategies of traditional trafficking and have evolved processes that provide the temporal predictability that typify canonical signaling.


Author(s):  
Divya Thomas ◽  
Satish Sagar ◽  
Xiang Liu ◽  
Hye-Rim Lee ◽  
James A. Grunkemeyer ◽  
...  

2020 ◽  
Author(s):  
Cemal Erdem ◽  
Ethan M. Bensman ◽  
Arnab Mutsuddy ◽  
Michael M. Saint-Antoine ◽  
Mehdi Bouhaddou ◽  
...  

ABSTRACTThe current era of big biomedical data accumulation and availability brings data integration opportunities for leveraging its totality to make new discoveries and/or clinically predictive models. Black-box statistical and machine learning methods are powerful for such integration, but often cannot provide mechanistic reasoning, particularly on the single-cell level. While single-cell mechanistic models clearly enable such reasoning, they are predominantly “small-scale”, and struggle with the scalability and reusability required for meaningful data integration. Here, we present an open-source pipeline for scalable, single-cell mechanistic modeling from simple, annotated input files that can serve as a foundation for mechanistic data integration. As a test case, we convert one of the largest existing single-cell mechanistic models to this format, demonstrating robustness and reproducibility of the approach. We show that the model cell line context can be changed with simple replacement of input file parameter values. We next use this new model to test alternative mechanistic hypotheses for the experimental observations that interferon-gamma (IFNG) inhibits epidermal growth factor (EGF)-induced cell proliferation. Model- based analysis suggested, and experiments support that these observations are better explained by IFNG-induced SOCS1 expression sequestering activated EGF receptors, thereby downregulating AKT activity, as opposed to direct IFNG-induced upregulation of p21 expression. Overall, this new pipeline enables large-scale, single-cell, and mechanistically-transparent modeling as a data integration modality complementary to machine learning.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 915 ◽  
Author(s):  
Ewa Monika Waszkiewicz ◽  
Wiktoria Kozlowska ◽  
Agata Zmijewska ◽  
Anita Franczak

Porcine myometrium possesses steroidogenic activity but its regulation is not well understood. It was hypothesized that the regulators of myometrial steroidogenesis are insulin-like growth factor 1 (IGF-1) and epidermal growth factor (EGF), which were found to modulate the steroidogenic activity of the endometrium and embryos. Myometrial slices were collected from gravid and nongravid pigs on days 10 or 11, 12 or 13 and 15 or 16 and studied for: (1) the relative abundance of IGF-1R and EGFR mRNA transcripts and proteins, to determine myometrial readiness to response growth factors treatment and (2) the effect of IGF-1 or EGF on the myometrial release of androstenedione (A4), testosterone (T), estrone (E1) and estradiol-17β (E2). The results showed that the relative expression and abundance of IGF-1R and EGFR in the myometrium were altered regarding the female reproductive status. During the estrous cycle, EGF increased myometrial release of A4 on days 12–13 and E2 on days 15–16. In gravid pigs (days 15–16), IGF-1 and EGF increased the E1 release. In conclusion: (1) porcine myometrium possesses the potential to respond to IGF-1 and EGF treatment, (2) EGF significantly increases myometrial A4 and E2 release in cyclic pigs, while IGF-1 and EGF increase the E1 release in gravid pigs.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
HaoRan Tang ◽  
Leo Leung ◽  
Grazia Saturno ◽  
Amaya Viros ◽  
Duncan Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document