scholarly journals Inhibitory action of chlorpromazine, dibucaine, and other phospholipid-interacting drugs on calcium-activated, phospholipid-dependent protein kinase.

1980 ◽  
Vol 255 (18) ◽  
pp. 8378-8380 ◽  
Author(s):  
T. Mori ◽  
Y. Takai ◽  
R. Minakuchi ◽  
B. Yu ◽  
Y. Nishizuka
1997 ◽  
Vol 78 (2) ◽  
pp. 759-766 ◽  
Author(s):  
Cui-Wei Xie ◽  
Darrell V. Lewis

Xie, Cui-Wei and Darrell V. Lewis. Involvement of cAMP-dependent protein kinase in μ-opioid modulation of NMDA-mediated synaptic currents. J. Neurophysiol. 78: 759–766, 1997. We have previously reported dual effects of μ-opioids on N-methyl-d-aspartate (NMDA)-receptor-mediated synaptic events in the hippocampal dentate gyrus: an indirect facilitating effect via suppression of GABAergic interneurons (disinhibition) and a direct inhibitory effect in the presence of γ-aminobutyric acid-A (GABAA) antagonists. The cellular mechanism underlying the inhibitory effect of μ-opioids remains to be determined. In the present study we examine the role of adenosine 3′,5′-cyclic monophosphate (cAMP)-dependent protein kinase (PKA) in μ-opioid-induced inhibition of NMDA currents in rat hippocampal slices. NMDA-receptor-mediated excitatory postsynaptic currents (NMDA EPSCs) were evoked by stimulating the lateral perforant path and were recorded from dentate granule cells with the use of whole cell voltage-clamp techniques in the presence of the GABAA antagonist and a non-NMDA type of glutamate receptor antagonist. Two selective μ-agonists, [N-MePhe3, D-Pro4]-morphiceptin and [D-Ala2, N-MePhe4, Gly-ol5]-enkephalin, induced dose-dependent inhibition of NMDA EPSCs in a concentration range of 0.3–10 μM. This inhibitory effect could be completely reversed by the opioid antagonists naloxone or prevented by a selective μ-antagonist cyprodime, but was not affected by removal of Mg2+ from the external perfusion medium. Intracellular application of pertussis toxin (PTX) into the granule cell via whole cell recording pipettes completely prevented μ-opioid-induced reduction in NMDA currents, suggesting that a postsynaptic mechanism involving PTX-sensitive G proteins might be responsible for the inhibitory action of μ-opioids. Further studies were conducted to identify the intracellular messengers that coupled with G proteins and transduced the effect of μ-opioids in granule cells. The adenylate cyclase activator forskolin was found to enhance NMDA-receptor-mediated synaptic responses and to reverse the inhibitory effect of μ-opioids. Sp-cAMPS, a specific PKA activator, also enhanced NMDA EPSCs, whereas the PKA inhibitor Rp-cAMPS reduced NMDA EPSCs and occluded further inhibition of the current by μ-opioids. These findings strongly suggest that NMDA receptor function is subject to the modulation by PKA, and that μ-opioids can inhibit NMDA currents through suppression of the cAMP cascade in the postsynaptic neuron. Combined with our previous findings, the present results also indicate that μ-opioids can modulate NMDA-receptor-mediated synaptic activity in a complex manner. The net effect of μ-opioids in the dentate gyrus may depend on the interplay between its disinhibitory action, which facilitates NMDA-receptor-mediated responses, and its inhibitory action on the cAMP cascade.


1999 ◽  
Vol 79 ◽  
pp. 149
Author(s):  
Yasuhito Naito ◽  
Hiromi Sakaguchi ◽  
Hisayuki Yokokura ◽  
Hiroyoshi Hidaka

1987 ◽  
Vol 244 (3) ◽  
pp. 699-704 ◽  
Author(s):  
G P Shaw ◽  
J F Hatt ◽  
N G Anderson ◽  
P J Hanson

The site and mechanism of action of epidermal growth factor (EGF) on acid secretion by rat isolated parietal cells were investigated by using the intracellular accumulation of the weak base aminopyrine as an index of secretory activity. When parietal cells were stimulated with histamine (0.5 mM), the concentration of EGF required for half-maximal inhibition of acid secretion was 19 nM, with a maximally effective concentration of EGF producing 38% inhibition of secretory activity. EGF did not inhibit secretion stimulated by 0.1 mM-carbachol, or by 30 microM-, 56 microM-, 100 microM- or 1000 microM-dibutyryl cyclic AMP, low concentrations of which produced a secretory response comparable with that obtained with 0.5 mM-histamine. Addition of 0.1 mM-3-isobutyl-1-methylxanthine (IBMX) substantially increased aminopyrine accumulation in the presence of 0.5 mM-histamine. The inhibitory action of EGF on histamine-stimulated secretion was blocked by 0.1 mM-IBMX, even if low concentrations of histamine were used to generate aminopyrine accumulation ratios similar to those obtained with 0.5 mM-histamine alone. The cyclo-oxygenase inhibitor flurbiprofen (1-100 microM) and the cyclo-oxygenase and lipoxygenase inhibitor nordihydroguaiaretic acid (10-100 microM) did not affect the inhibitory action of EGF. The pattern of inhibition of secretion produced by the activator of Ca2+-sensitive phospholipid-dependent protein kinase, 12-O-tetradecanoylphorbol 13-acetate, was markedly different from that produced by EGF. In conclusion, a major site of the action of EGF on acid secretion in the intact stomach is probably a decrease in the stimulatory effect of histamine by a mechanism which does not involve Ca2+-sensitive phospholipid-dependent protein kinase or the production of prostaglandins, but which might involve enhancement of cyclic AMP phosphodiesterase activity.


Sign in / Sign up

Export Citation Format

Share Document