symbiotic nodule
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 13)

H-INDEX

15
(FIVE YEARS 2)

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2654
Author(s):  
Maria Lebedeva ◽  
Mahboobeh Azarakhsh ◽  
Darina Sadikova ◽  
Lyudmila Lutova

The interaction between legume plants and soil bacteria rhizobia results in the formation of new organs on the plant roots, symbiotic nodules, where rhizobia fix atmospheric nitrogen. Symbiotic nodules represent a perfect model to trace how the pre-existing regulatory pathways have been recruited and modified to control the development of evolutionary “new” organs. In particular, genes involved in the early stages of lateral root development have been co-opted to regulate nodule development. Other regulatory pathways, including the players of the KNOX-cytokinin module, the homologues of the miR172-AP2 module, and the players of the systemic response to nutrient availability, have also been recruited to a unique regulatory program effectively governing symbiotic nodule development. The role of the NIN transcription factor in the recruitment of such regulatory modules to nodulation is discussed in more details.


Author(s):  
V. E. Tsyganov

The interaction of legumes with rhizobia leads to formation of the symbiotic nodules on their roots, which are specialized plant organs for nitrogen fixation. Considerable progress has been made in deciphering the molecular-genetic and cellular mechanisms of symbiotic nodule development in recent years. However, some aspects of nodule development clearly merit much more attention.


Author(s):  
K. N. Demchenko ◽  
A. S. Kiryushkin ◽  
E. L. Ilina ◽  
E. D. Guseva

In order to understand the relationship between genetic programs for the development of different types of lateral roots and symbiotic nodules, a comparative analysis of promoter activity of LOB-DOMAIN PROTEIN family genes was carried out.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 207 ◽  
Author(s):  
Leandro Lucero ◽  
Jeremie Bazin ◽  
Johan Rodriguez Melo ◽  
Fernando Ibañez ◽  
Martín D. Crespi ◽  
...  

RNA-Binding Protein 1 (RBP1) was first identified as a protein partner of the long noncoding RNA (lncRNA) ENOD40 in Medicago truncatula, involved in symbiotic nodule development. RBP1 is localized in nuclear speckles and can be relocalized to the cytoplasm by the interaction with ENOD40. The two closest homologs to RBP1 in Arabidopsis thaliana were called Nuclear Speckle RNA-binding proteins (NSRs) and characterized as alternative splicing modulators of specific mRNAs. They can recognize in vivo the lncRNA ALTERNATIVE SPLICING COMPETITOR (ASCO) among other lncRNAs, regulating lateral root formation. Here, we performed a phylogenetic analysis of NSR/RBP proteins tracking the roots of the family to the Embryophytes. Strikingly, eudicots faced a reductive trend of NSR/RBP proteins in comparison with other groups of flowering plants. In Medicago truncatula and Lotus japonicus, their expression profile during nodulation and in specific regions of the symbiotic nodule was compared to that of the lncRNA ENOD40, as well as to changes in alternative splicing. This hinted at distinct and specific roles of each member during nodulation, likely modulating the population of alternatively spliced transcripts. Our results establish the basis to guide future exploration of NSR/RBP function in alternative splicing regulation in different developmental contexts along the plant lineage.


2019 ◽  
Vol 29 (21) ◽  
pp. 3657-3668.e5 ◽  
Author(s):  
Katharina Schiessl ◽  
Jodi L.S. Lilley ◽  
Tak Lee ◽  
Ioannis Tamvakis ◽  
Wouter Kohlen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document