scholarly journals Roles for both the RAP30 and RAP74 subunits of transcription factor IIF in transcription initiation and elongation by RNA polymerase II.

1994 ◽  
Vol 269 (41) ◽  
pp. 25684-25691
Author(s):  
S Tan ◽  
T Aso ◽  
R C Conaway ◽  
J W Conaway
2017 ◽  
Vol 89 (4) ◽  
pp. 730-745 ◽  
Author(s):  
Elena Babiychuk ◽  
Khai Trinh Hoang ◽  
Klaas Vandepoele ◽  
Eveline Van De Slijke ◽  
Danny Geelen ◽  
...  

2004 ◽  
Vol 24 (24) ◽  
pp. 10975-10985 ◽  
Author(s):  
Mohamed A. Ghazy ◽  
Seth A. Brodie ◽  
Michelle L. Ammerman ◽  
Lynn M. Ziegler ◽  
Alfred S. Ponticelli

ABSTRACT Transcription factor IIF (TFIIF) is required for transcription of protein-encoding genes by eukaryotic RNA polymerase II. In contrast to numerous studies establishing a role for higher eukaryotic TFIIF in multiple steps of the transcription cycle, relatively little has been reported regarding the functions of TFIIF in the yeast Saccharomyces cerevisiae. In this study, site-directed mutagenesis, plasmid shuffle complementation assays, and primer extension analyses were employed to probe the functional domains of the S. cerevisiae TFIIF subunits Tfg1 and Tfg2. Analyses of 35 Tfg1 alanine substitution mutants and 19 Tfg2 substitution mutants identified 5 mutants exhibiting altered properties in vivo. Primer extension analyses revealed that the conditional growth properties exhibited by the tfg1-E346A, tfg1-W350A, and tfg2-L59K mutants were associated with pronounced upstream shifts in transcription initiation in vivo. Analyses of double mutant strains demonstrated functional interactions between the Tfg1 mutations and mutations in Tfg2, TFIIB, and RNA polymerase II. Importantly, biochemical results demonstrated an altered interaction between mutant TFIIF protein and RNA polymerase II. These results provide direct evidence for the involvement of S. cerevisiae TFIIF in the mechanism of transcription start site utilization and support the view that a TFIIF-RNA polymerase II interaction is a determinant in this process.


2003 ◽  
Vol 278 (49) ◽  
pp. 48950-48956 ◽  
Author(s):  
Lynn M. Ziegler ◽  
Denys A. Khaperskyy ◽  
Michelle L. Ammerman ◽  
Alfred S. Ponticelli

1999 ◽  
Vol 19 (11) ◽  
pp. 7377-7387 ◽  
Author(s):  
Delin Ren ◽  
Lei Lei ◽  
Zachary F. Burton

ABSTRACT Human transcription factor IIF (TFIIF) is an α2β2 heterotetramer of RNA polymerase II-associating 74 (RAP74) and RAP30 subunits. Mutagenic analysis shows that the N-terminal region of RAP74 between L155 (leucine at codon 155) and M177 is important for initiation. Mutants in this region have reduced activity in transcription, but none are inactive. Single amino acid substitutions at hydrophobic residues L155, W164, I176, and M177 have similar activity to RAP74(1–158), from which all but three amino acids of this region are deleted. Residual activity can be explained because each of these mutants forms a complex with RAP30 and recruits RNA polymerase II into the preinitiation complex. Mutants are defective for formation of the first phosphodiester bond from the adenovirus major late promoter but do not appear to have an additional significant defect in promoter escape. Negative DNA supercoiling partially compensates for the defects of TFIIF mutants in initiation, indicating that TFIIF may help to untwist the DNA helix for initiation.


1999 ◽  
Vol 19 (12) ◽  
pp. 8372-8382 ◽  
Author(s):  
Lei Lei ◽  
Delin Ren ◽  
Zachary F. Burton

ABSTRACT Transcription factor IIF (TFIIF) is a protein allosteric effector for RNA polymerase II during the initiation and elongation phases of the transcription cycle. In initiation, TFIIF induces promoter DNA to wrap almost a full turn around RNA polymerase II in a complex that includes the general transcription factors TATA-binding protein, TFIIB, and TFIIE. During elongation, TFIIF also supports a more active conformation of RNA polymerase II. This conformational model for elongation is supported by three lines of experimental evidence. First, a region within the RNA polymerase II-associating protein 74 (RAP74) subunit of TFIIF (amino acids T154 to M177), a region that is critical for isomerization of the preinitiation complex, is also critical for elongation stimulation. Amino acid substitutions within this region are shown to have very similar effects on initiation and elongation, and mutagenic analysis indicates that L155, W164, N172, I176, and M177 are the most important residues in this region for transcription. Second, TFIIF is shown to have a higher affinity for rapidly elongating RNA polymerase II than for the stalled elongation complex, indicating that RNA polymerase II alternates between active and inactive states during elongation and that TFIIF stimulates elongation by supporting the active conformational state of RNA polymerase II. The deleterious I176A substitution in the critical region of RAP74 decreases the affinity of TFIIF for the active form of the elongation complex. Third, TFIIF is shown by Arrhenius analysis to stimulate elongation by populating an activated state of RNA polymerase II.


2015 ◽  
Vol 112 (13) ◽  
pp. 3961-3966 ◽  
Author(s):  
James Fishburn ◽  
Eric Tomko ◽  
Eric Galburt ◽  
Steven Hahn

Formation of the RNA polymerase II (Pol II) open complex (OC) requires DNA unwinding mediated by the transcription factor TFIIH helicase-related subunit XPB/Ssl2. Because XPB/Ssl2 binds DNA downstream from the location of DNA unwinding, it cannot function using a conventional helicase mechanism. Here we show that yeast TFIIH contains an Ssl2-dependent double-stranded DNA translocase activity. Ssl2 tracks along one DNA strand in the 5′ → 3′ direction, implying it uses the nontemplate promoter strand to reel downstream DNA into the Pol II cleft, creating torsional strain and leading to DNA unwinding. Analysis of the Ssl2 and DNA-dependent ATPase activity of TFIIH suggests that Ssl2 has a processivity of approximately one DNA turn, consistent with the length of DNA unwound during transcription initiation. Our results can explain why maintaining the OC requires continuous ATP hydrolysis and the function of TFIIH in promoter escape. Our results also suggest that XPB/Ssl2 uses this translocase mechanism during DNA repair rather than physically wedging open damaged DNA.


1999 ◽  
Vol 274 (50) ◽  
pp. 35668-35675 ◽  
Author(s):  
Qin Yan ◽  
Rodney J. Moreland ◽  
Joan Weliky Conaway ◽  
Ronald C. Conaway

Sign in / Sign up

Export Citation Format

Share Document