scholarly journals Amino Acid Substitutions in Yeast TFIIF Confer Upstream Shifts in Transcription Initiation and Altered Interaction with RNA Polymerase II

2004 ◽  
Vol 24 (24) ◽  
pp. 10975-10985 ◽  
Author(s):  
Mohamed A. Ghazy ◽  
Seth A. Brodie ◽  
Michelle L. Ammerman ◽  
Lynn M. Ziegler ◽  
Alfred S. Ponticelli

ABSTRACT Transcription factor IIF (TFIIF) is required for transcription of protein-encoding genes by eukaryotic RNA polymerase II. In contrast to numerous studies establishing a role for higher eukaryotic TFIIF in multiple steps of the transcription cycle, relatively little has been reported regarding the functions of TFIIF in the yeast Saccharomyces cerevisiae. In this study, site-directed mutagenesis, plasmid shuffle complementation assays, and primer extension analyses were employed to probe the functional domains of the S. cerevisiae TFIIF subunits Tfg1 and Tfg2. Analyses of 35 Tfg1 alanine substitution mutants and 19 Tfg2 substitution mutants identified 5 mutants exhibiting altered properties in vivo. Primer extension analyses revealed that the conditional growth properties exhibited by the tfg1-E346A, tfg1-W350A, and tfg2-L59K mutants were associated with pronounced upstream shifts in transcription initiation in vivo. Analyses of double mutant strains demonstrated functional interactions between the Tfg1 mutations and mutations in Tfg2, TFIIB, and RNA polymerase II. Importantly, biochemical results demonstrated an altered interaction between mutant TFIIF protein and RNA polymerase II. These results provide direct evidence for the involvement of S. cerevisiae TFIIF in the mechanism of transcription start site utilization and support the view that a TFIIF-RNA polymerase II interaction is a determinant in this process.

2021 ◽  
Author(s):  
Blase Matthew LeBlanc ◽  
Rosamaria Yvette Moreno ◽  
Edwin Escobar ◽  
Mukesh Kumar Venkat Ramani ◽  
Jennifer S Brodbelt ◽  
...  

RNA polymerase II (RNAP II) is one of the primary enzymes responsible for expressing protein-encoding genes and some small nuclear RNAs. The enigmatic carboxy-terminal domain (CTD) of RNAP II and...


2001 ◽  
Vol 276 (15) ◽  
pp. 12266-12273 ◽  
Author(s):  
Wenxiang Wei ◽  
Dorjbal Dorjsuren ◽  
Yong Lin ◽  
Weiping Qin ◽  
Takahiro Nomura ◽  
...  

The general transcription factor IIF (TFIIF) assembled in the initiation complex, and RAP30 of TFIIF, have been shown to associate with RNA polymerase II (pol II), although it remains unclear which pol II subunit is responsible for the interaction. We examined whether TFIIF interacts with RNA polymerase II subunit 5 (RPB5), the exposed domain of which binds transcriptional regulatory factors such as hepatitis B virus X protein and a novel regulatory protein, RPB5-mediating protein. The results demonstrated that RPB5 directly binds RAP30in vitrousing purified recombinant proteins andin vivoin COS1 cells transiently expressing recombinant RAP30 and RPB5. The RAP30-binding region was mapped to the central region (amino acids (aa) 47–120) of RPB5, which partly overlaps the hepatitis B virus X protein-binding region. Although the middle part (aa 101–170) and the N-terminus (aa 1–100) of RAP30 independently bound RPB5, the latter was not involved in the RPB5 binding when RAP30 was present in TFIIF complex. Scanning of the middle part of RAP30 by clustered alanine substitutions and then point alanine substitutions pinpointed two residues critical for the RPB5 binding inin vitroandin vivoassays. Wild type but not mutants Y124A and Q131A of RAP30 coexpressed with FLAG-RAP74 efficiently recovered endogenous RPB5 to the FLAG-RAP74-bound anti-FLAG M2 resin. The recovered endogenous RPB5 is assembled in pol II as demonstrated immunologically. Interestingly, coexpression of the central region of RPB5 and wild type RAP30 inhibited recovery of endogenous pol II to the FLAG-RAP74-bound M2 resin, strongly suggesting that the RAP30-binding region of RPB5 inhibited the association of TFIIF and pol II. The exposed domain of RPB5 interacts with RAP30 of TFIIF and is important for the association between pol II and TFIIF.


2004 ◽  
Vol 24 (7) ◽  
pp. 2863-2874 ◽  
Author(s):  
Thomas C. Tubon ◽  
William P. Tansey ◽  
Winship Herr

ABSTRACT The general transcription factor TFIIB is a highly conserved and essential component of the eukaryotic RNA polymerase II (pol II) transcription initiation machinery. It consists of a single polypeptide with two conserved structural domains: an amino-terminal zinc ribbon structure (TFIIBZR) and a carboxy-terminal core (TFIIBCORE). We have analyzed the role of the amino-terminal region of human TFIIB in transcription in vivo and in vitro. We identified a small nonconserved surface of the TFIIBZR that is required for pol II transcription in vivo and for different types of basal pol II transcription in vitro. Consistent with a general role in transcription, this TFIIBZR surface is directly involved in the recruitment of pol II to a TATA box-containing promoter. Curiously, although the amino-terminal human TFIIBZR domain can recruit both human pol II and yeast (Saccharomyces cerevisiae) pol II, the yeast TFIIB amino-terminal region recruits yeast pol II but not human pol II. Thus, a critical process in transcription from many different promoters—pol II recruitment—has changed in sequence specificity during eukaryotic evolution.


2002 ◽  
Vol 22 (21) ◽  
pp. 7543-7552 ◽  
Author(s):  
Subhrangsu S. Mandal ◽  
Helen Cho ◽  
Sungjoon Kim ◽  
Kettly Cabane ◽  
Danny Reinberg

ABSTRACT FCP1, a phosphatase specific for the carboxy-terminal domain of RNA polymerase II (RNAP II), was found to stimulate transcript elongation by RNAP II in vitro and in vivo. This activity is independent of and distinct from the elongation-stimulatory activity associated with transcription factor IIF (TFIIF), and the elongation effects of TFIIF and FCP1 were found to be additive. Genetic experiments resulted in the isolation of several distinct fcp1 alleles. One of these alleles was found to suppress the slow-growth phenotype associated with either the reduction of intracellular nucleotide concentrations or the inhibition of other transcription elongation factors. Importantly, this allele of fcp1 was found to be lethal when combined individually with two mutations in the second-largest subunit of RNAP II, which had been shown previously to affect transcription elongation.


2001 ◽  
Vol 21 (14) ◽  
pp. 4427-4440 ◽  
Author(s):  
Silviu L. Faitar ◽  
Seth A. Brodie ◽  
Alfred S. Ponticelli

ABSTRACT The general transcription factor IIB (TFIIB) is required for transcription of class II genes by RNA polymerase II. Previous studies demonstrated that mutations in the Saccharomyces cerevisiae SUA7 gene, which encodes TFIIB, can alter transcription initiation patterns in vivo. To further delineate the functional domain and residues of TFIIB involved in transcription start site utilization, a genetic selection was used to isolate S. cerevisiae TFIIB mutants exhibiting downstream shifts in transcription initiation in vivo. Both dominant and recessive mutations conferring downstream shifts were identified at multiple positions within a highly conserved homology block in the N-terminal region of the protein. The TFIIB mutations conferred downstream shifts in transcription initiation at the ADH1 and CYC1 promoters, whereas no significant shifts were observed at the HIS3 promoter. Analysis of a series of ADH1-HIS3 hybrid promoters and variant ADH1 and HIS3 promoters containing insertions, deletions, or site-directed base substitutions revealed that the feature that renders a promoter sensitive to TFIIB mutations is the sequence in the immediate vicinity of the normal start sites. We discuss these results in light of possible models for the mechanism of start site utilization by S. cerevisiae RNA polymerase II and the role played by TFIIB.


1996 ◽  
Vol 16 (7) ◽  
pp. 3651-3657 ◽  
Author(s):  
S P Shaw ◽  
J Wingfield ◽  
M J Dorsey ◽  
J Ma

The general transcription factor IIB (TFIIB) is required for RNA polymerase II transcription in eukaryotes. It provides a physical link between the TATA-binding protein (TBP) and the RNA polymerase and is a component previously suggested to respond to transcriptional activators in vitro. In this report, we compare the yeast (Saccharomyces cerevisiae) and human forms of the protein in yeast cells to study their functional differences. We demonstrate that human TFIIB fails to functionally replace yeast TFIIB in yeast cells. By analyzing various human-yeast hybrid TFIIB molecules, we show that a 14-amino-acid region at the amino terminus of the first repeat of yeast TFIIB plays an important role in determining species specificity in vivo. In addition, we identify four amino acids in this region that are critical for an amphipathic helix unique to yeast TFIIB. By site-directed mutagenesis analyses we demonstrate that these four amino acids are important for yeast TFIIB's activity in vivo. Finally, we show that mutations in the species-specific region of yeast TFIIB can differentially affect the expression of genes activated by different activators in vivo. These results provide strong evidence suggesting that yeast TFIIB is involved in the process of transcriptional activation in living cells.


2002 ◽  
Vol 22 (22) ◽  
pp. 8088-8099 ◽  
Author(s):  
Xianming Mo ◽  
William S. Dynan

ABSTRACT Ku is an abundant nuclear protein with an essential function in the repair of DNA double-strand breaks. Various observations suggest that Ku also interacts with the cellular transcription machinery, although the mechanism and significance of this interaction are not well understood. In the present study, we investigated the subnuclear distribution of Ku in normally growing human cells by using confocal microscopy, chromatin immunoprecipitation, and protein immunoprecipitation. All three approaches indicated association of Ku with RNA polymerase II (RNAP II) elongation sites. This association occurred independently of the DNA-dependent protein kinase catalytic subunit and was highly selective. There was no detectable association with the initiating isoform of RNAP II or with the general transcription initiation factors. In vitro protein-protein interaction assays demonstrated that the association of Ku with elongation proteins is mediated, in part, by a discrete C-terminal domain in the Ku80 subunit. Functional disruption of this interaction with a dominant-negative mutant inhibited transcription in vitro and in vivo and suppressed cell growth. These results suggest that association of Ku with transcription sites is important for maintenance of global transcription levels. Tethering of double-strand break repair proteins to defined subnuclear structures may also be advantageous in maintenance of genome stability.


2019 ◽  
Author(s):  
Joshua E. Mayfield ◽  
Seema Irani ◽  
Edwin E. Escobar ◽  
Zhao Zhang ◽  
Nathanial T. Burkholder ◽  
...  

SummaryThe Positive Transcription Elongation Factor b (P-TEFb) phosphorylates Ser2 residues of RNA polymerase II’s C-terminal domain (CTD) and is essential for the transition from transcription initiation to elongation in vivo. Surprisingly, P-TEFb exhibits Ser5 phosphorylation activity in vitro. The mechanism garnering Ser2 specificity to P-TEFb remains elusive and hinders understanding of the transition from transcription initiation to elongation. Through in vitro reconstruction of CTD phosphorylation, mass spectrometry analysis, and chromatin immunoprecipitation sequencing (ChIP-seq) analysis we uncover a mechanism by which Tyr1 phosphorylation directs the kinase activity of P-TEFb and alters its specificity from Ser5 to Ser2. The loss of Tyr1 phosphorylation causes a reduction of phosphorylated Ser2 and accumulation of RNA polymerase II in the promoter region as detected by ChIP-seq. We demonstrate the ability of Tyr1 phosphorylation to generate a heterogeneous CTD modification landscape that expands the CTD’s coding potential. These findings provide direct experimental evidence for a combinatorial CTD phosphorylation code wherein previously installed modifications direct the identity and abundance of subsequent coding events by influencing the behavior of downstream enzymes.


Sign in / Sign up

Export Citation Format

Share Document