scholarly journals The glycine cleavage system. The coupled expression of the glycine decarboxylase gene and the H-protein gene in the chicken.

1991 ◽  
Vol 266 (5) ◽  
pp. 3330-3334
Author(s):  
S Kure ◽  
H Koyata ◽  
A Kume ◽  
Y Ishiguro ◽  
K Hiraga
1997 ◽  
Vol 272 (32) ◽  
pp. 19880-19883 ◽  
Author(s):  
Kazuko Fujiwara ◽  
Kazuko Okamura-Ikeda ◽  
Lester Packer ◽  
Yutaro Motokawa

1993 ◽  
Vol 292 (2) ◽  
pp. 425-430 ◽  
Author(s):  
V Besson ◽  
F Rebeille ◽  
M Neuburger ◽  
R Douce ◽  
E A Cossins

Plant tissues contain highly conjugated forms of folate. Despite this, the ability of plant folate-dependent enzymes to utilize tetrahydrofolate polyglutamates has not been examined in detail. In leaf mitochondria, the glycine-cleavage system and serine hydroxymethyltransferase, present in large amounts in the matrix space and involved in the photorespiratory cycle, necessitate the presence of tetrahydrofolate as a cofactor. The aim of the present work was to determine whether glutamate chain length (one to six glutamate residues) influenced the affinity constant for tetrahydrofolate and the maximal velocities displayed by these two enzymes. The results show that the affinity constant decreased by at least one order of magnitude when the tetrahydrofolate substrate contained three or more glutamate residues. In contrast, maximal velocities were not altered in the presence of these substrates. These results are consistent with analyses of mitochondrial folates which revealed a pool of polyglutamates dominated by tetra and pentaglutamates. The equilibrium constant of the serine hydroxymethyltransferase suggests that, during photorespiration, the reaction must be permanently pushed toward the formation of serine (the unfavourable direction) to allow the recycling of tetrahydrofolate necessary for the operation of the glycine decarboxylase T-protein.


2018 ◽  
Vol 17 (1) ◽  
pp. 141-151 ◽  
Author(s):  
Patricia E. López-Calcagno ◽  
Stuart Fisk ◽  
Kenny L. Brown ◽  
Simon E. Bull ◽  
Paul F. South ◽  
...  

2000 ◽  
Vol 78 (6) ◽  
pp. 725-730 ◽  
Author(s):  
Francis Choy ◽  
Lisa Sharp ◽  
Derek A Applegarth

The H-protein is one of the four essential components (H-, L-, P-, and T-proteins) of the mammalian glycine cleavage enzyme complex, the major degradative pathway of glycine. We have isolated the full-length cDNA of the H-protein gene from the rabbit (Oryctolagus caniculus) by reverse transcription of liver poly-A mRNA and determined its nucleotide sequence (GenBank Acc. No. BankIt 318281 AF 231451). Similar to that in human, the rabbit H-protein gene possesses a 519-bp open reading frame that translates a 173-amino-acid (aa) protein. This reading frame is comprised of a 48-aa mitochondrial targeting sequence and a 125-aa residue that constitutes the mature mitochondrial matrix protein. In the mature protein region, there is a 95.5% nucleotide and 98.4% amino-acid sequence similarity to human. This conservation was also noted in the mature protein of the cow (Bos taurus) and chicken (Gallus domesticus), where there are a 94.1% and 85.3% nucleotide similarities, and 95.2% and 85.6% amino-acid sequence similarities, respectively. However, the targeting region is not as well conserved. Comparison of the rabbit targeting sequence to that in human, cow, and chicken reveals 84.0%, 79.2%, and 72.9% nucleotide, and 72.9%, 75.0%, and 54.2% amino-acid sequence similarities, respectively. These findings suggest that within the H-protein gene, the regions encoding the mitochondrial targeting and matrix protein may have evolved differently. Gene diversification in the former may reflect the species specificity in targeting proteins destined for the mitochondria, whereas homology in the latter suggests a very similar structure-function of the mature H-protein among these species. This homology in structure-function likely accounts for the observation that non-human H-protein can replace the human protein in the activity assay of the glycine cleavage enzyme system. This includes the biochemical diagnosis of non-ketotic hyperglycinemia (NKH) resulting from defects other than the H-protein, e.g., mutation(s) in the P-protein.Key words: glycine cleavage enzyme, H-protein, sequence comparison, non-ketotic hyperglycinemia.


Sign in / Sign up

Export Citation Format

Share Document