scholarly journals Des-Arg9 bradykinin modulates DNA synthesis, phospholipase C, and protein kinase C in cultured mesangial cells. Distinction from effects of bradykinin.

1991 ◽  
Vol 266 (31) ◽  
pp. 21037-21043 ◽  
Author(s):  
M. Issandou ◽  
J.M. Darbon
2005 ◽  
Vol 289 (5) ◽  
pp. F1078-F1087 ◽  
Author(s):  
Helena Frecker ◽  
Snezana Munk ◽  
Hong Wang ◽  
Catharine Whiteside

In high glucose, glomerular mesangial cells (MCs) demonstrate impaired Ca2+ signaling in response to seven-transmembrane receptor stimulation. To identify the mechanism, we first postulated decreased release from intracellular stores. Intracellular Ca2+ was measured in fluo-3-loaded primary cultured rat MCs using confocal fluorescence microscopy. In high glucose (HG) 30 mM for 48 h, the 25 nM ionomycin-stimulated intracellular Ca2+ response was reduced to 82% of that observed in normal glucose (NG). In NG 5.6 mM, Ca2+ responses to endothelin (ET)-1 and platelet-derived growth factor (PDGF) were unchanged in cells cultured in 50 nM Ca2+ vs. 1.8 mM Ca2+. Depletion of intracellular Ca2+ stores with thapsigargin eliminated ET-1-stimulated Ca2+ responses. Incubation in 30 mM glucose (HG) for 48 h or stimulation with phorbol myristate acetate (PMA) for 10 min eliminated the Ca2+ response to ET-1 but had no effect on the PDGF response. Downregulation of protein kinase C (PKC) with 24-h PMA or inhibition with Gö6976 in HG normalized the Ca2+ response to ET-1. Because ET-1 and PDGF stimulate Ca2+ signaling through different phospholipase C pathways, we hypothesized that, in HG, PKC selectively phosphorylates and inhibits PLC-β3. Using confocal immunofluorescence imaging, in NG, a 1.6- to 1.7-fold increase in PLC-β3 Ser1105 phosphorylation was observed following PMA or ET-1 stimulation for 10 min. In HG, immunofluorescent imaging and immunoblotting showed increased PLC-β3 phosphorylation, without change in total PLC-β3, which was reversed with 24-h PMA or Gö6976. We conclude that reduced Ca2+ signaling in HG cannot be explained by reduced Ca2+ stores but is due to conventional PKC-dependent phosphorylation and inactivation of PLC-β3.


1986 ◽  
Vol 234 (1) ◽  
pp. 125-130 ◽  
Author(s):  
J Pfeilschifter ◽  
A Kurtz ◽  
C Bauer

It was the aim of the present study to find out if a common mechanism exists by which the vasoconstrictive hormones angiotension II, noradrenaline and 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC) increase prostaglandin E2 (PGE2) synthesis in cultures of rat renal mesangial cells. Angiotension II, noradrenaline and AGEPC stimulated PGE2 synthesis and uptake of 45Ca2+ in cultured mesangial cells. Both of these effects could be completely suppressed by the calcium channel blocker verapamil. Angiotensin II, noradrenaline and AGEPC caused a rapid breakdown of phosphatidylinositol 4,5-bisphosphate with a concomitant increase of 1,2-diacylglycerol and inositol trisphosphate, indicating an activation of phospholipase C by these hormones. Addition of verapamil had no effect on the hormone-induced stimulation of phospholipase C. The synthetic analogue of diacylglycerol, 1-oleoyl-2-acetylglycerol, and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA), both of which are known to stimulate protein kinase C, enhanced PGE2 synthesis. Chelation of extracellular calcium with EDTA or addition of verapamil abolished the effect of 1-oleoyl-2-acetylglycerol and phorbol ester on PGE2 synthesis. 1-Oleoyl-2-acetylglycerol and phorbol ester increased the uptake of 45Ca2+ by the cells in a dose-dependent manner and this effect could be blocked by verapamil. The entirety of these data leads us to suggest that vasoconstrictor-evoked synthesis of PGE2 in rat mesangial cells is mediated by the subsequent activation of phospholipase C and protein kinase C. The activation of protein kinase C by diacylglycerol is likely to be involved in the increase of the calcium permeability of the plasma membrane which is a prerequisite for PGE2 synthesis induced by vasoconstrictive hormones.


1990 ◽  
Vol 124 (2) ◽  
pp. 225-232 ◽  
Author(s):  
J. J. Hirst ◽  
G. E. Rice ◽  
G. Jenkin ◽  
G. D. Thorburn

ABSTRACT The effect of protein kinase C activation and dibutyryl cyclic AMP on oxytocin secretion by ovine luteal tissue slices was investigated. Several putative regulators of luteal oxytocin secretion were also examined. Oxytocin was secreted by luteal tissue slices at a basal rate of 234·4 ± 32·8 pmol/g per h (n = 24) during 60-min incubations.Activators of protein kinase C: phorbol 12,13-dibutyrate (n = 8), phorbol 12-myristate,13-acetate (n = 4) and 1,2-didecanoylglycerol (n = 5), caused a dose-dependent stimulation of oxytocin secretion in the presence of a calcium ionophore (A23187; 0·2 μmol/l). Phospholipase C (PLC; 50–250 units/l) also caused a dose-dependent stimulation of oxytocin secretion by luteal slices. Phospholipase C-stimulated oxytocin secretion was potentiated by the addition of an inhibitor of diacylglycerol kinase (R59 022; n = 4). These data suggest that the activation of protein kinase C has a role in the stimulation of luteal oxytocin secretion. The results are also consistent with the involvement of protein kinase C in PLC-stimulated oxytocin secretion. The cyclic AMP second messenger system does not appear to be involved in the control of oxytocin secretion by the corpus luteum. Journal of Endocrinology (1990) 124, 225–232


Sign in / Sign up

Export Citation Format

Share Document