scholarly journals A heritable variant of mouse liver ornithine aminotransferase (EC 2.6.1.13) induced by ethylnitrosourea.

1988 ◽  
Vol 263 (30) ◽  
pp. 15781-15784
Author(s):  
C S Giometti ◽  
S L Tollaksen ◽  
M A Gemmell ◽  
J Burcham ◽  
C Peraino
1991 ◽  
Vol 11 (12) ◽  
pp. 6050-6058
Author(s):  
F C Kuo ◽  
J E Darnell

We previously demonstrated that glutamine synthetase (GS) and ornithine aminotransferase (OAT) mRNAs are expressed in the mouse liver acinus preferentially in pericentral hepatocytes, that is, those immediately surrounding terminal central veins (A.L. Bennett, K.E. Paulson, R.E. Miller, and J.E. Darnell, Jr., J. Cell Biol. 105:1073-1085, 1987, and F.C. Kuo, W.L. Hwu, D. Valle, and J.E. Darnell, Jr., Proc. Natl. Acad. Sci. USA, in press). We now show that hepatocytes surrounding large collecting hepatic veins but not portal veins also express these two mRNAs. The pericentral hepatocytes are the most distal hepatocytes with respect to acinar blood flow, whereas this is not necessarily the case for hepatocytes next to the large collecting hepatic veins. This result implies that it is contact with some hepatic venous element which signals positional expression. In an effort to induce conditions that change relationships between hepatocytes and blood vessels, regenerating liver was studied. After surgical removal of two-thirds or more of the liver, there was no noticeable change in GS or OAT expression in the remaining liver tissue during regeneration. However, treatment with carbon tetrachloride (CCl4), which specifically kills pericentral hepatocytes, completely removed GS- and OAT-containing cells and promptly halted hepatic transcription of GS. Repair of CCl4 damage is associated with invasion of inflammatory and scavenging cells, which remove dead hepatocytes to allow regrowth. Only when hepatocytes resumed contact with pericentral veins were the pretreatment levels of OAT and GS mRNA and high levels of GS transcription restored.


1991 ◽  
Vol 11 (12) ◽  
pp. 6050-6058 ◽  
Author(s):  
F C Kuo ◽  
J E Darnell

We previously demonstrated that glutamine synthetase (GS) and ornithine aminotransferase (OAT) mRNAs are expressed in the mouse liver acinus preferentially in pericentral hepatocytes, that is, those immediately surrounding terminal central veins (A.L. Bennett, K.E. Paulson, R.E. Miller, and J.E. Darnell, Jr., J. Cell Biol. 105:1073-1085, 1987, and F.C. Kuo, W.L. Hwu, D. Valle, and J.E. Darnell, Jr., Proc. Natl. Acad. Sci. USA, in press). We now show that hepatocytes surrounding large collecting hepatic veins but not portal veins also express these two mRNAs. The pericentral hepatocytes are the most distal hepatocytes with respect to acinar blood flow, whereas this is not necessarily the case for hepatocytes next to the large collecting hepatic veins. This result implies that it is contact with some hepatic venous element which signals positional expression. In an effort to induce conditions that change relationships between hepatocytes and blood vessels, regenerating liver was studied. After surgical removal of two-thirds or more of the liver, there was no noticeable change in GS or OAT expression in the remaining liver tissue during regeneration. However, treatment with carbon tetrachloride (CCl4), which specifically kills pericentral hepatocytes, completely removed GS- and OAT-containing cells and promptly halted hepatic transcription of GS. Repair of CCl4 damage is associated with invasion of inflammatory and scavenging cells, which remove dead hepatocytes to allow regrowth. Only when hepatocytes resumed contact with pericentral veins were the pretreatment levels of OAT and GS mRNA and high levels of GS transcription restored.


Author(s):  
G. L. Brown

Bismuth (Bi) stains nucleoproteins (NPs) by interacting with available amino and primary phosphate groups. These two staining mechanisms are distinguishable by glutaraldehyde crosslinking (Fig. 1,2).Isolated mouse liver nuclei, extracted with salt and acid solutions, fixed in either formaldehyde (form.) or gl utaraldehyde (glut.) and stained with Bi, were viewed to determine the effect of the extractions on Bi stainina. Solubilized NPs were analyzed by SDS-polyacrylamide gel electrophoresis.Extraction with 0.14 M salt does not change the Bi staining characteristics (Fig. 3). 0.34 M salt reduces nucleolar (Nu) staining but has no effect on interchromatinic (IC) staining (Fig. 4). Proteins responsible for Nu and glut.- insensitive IC staining are removed when nuclei are extracted with 0.6 M salt (Fig. 5, 6). Low salt and acid extraction prevents Bi-Nu staining but has no effect on IC staining (Fig. 7). When nuclei are extracted with 0.6 M salt followed by low salt and acid, all Bi-staining components are removed (Fig. 8).


Author(s):  
Nalin J. Unakar

The increased number of lysosomes as well as the close approximation of lysosomes to the Golgi apparatus in tissue under variety of experimental conditions is commonly observed. These observations suggest Golgi involvement in lysosomal production. The role of the Golgi apparatus in the production of lysosomes in mouse liver was studied by electron microscopy of liver following toxic injury by CCI4.


Author(s):  
K. Brasch ◽  
J. Williams ◽  
D. Gallo ◽  
T. Lee ◽  
R. L. Ochs

Though first described in 1903 by Ramon-y-Cajal as silver-staining “accessory bodies” to nucleoli, nuclear bodies were subsequently rediscovered by electron microscopy about 30 years ago. Nuclear bodies are ubiquitous, but seem most abundant in hyperactive and malignant cells. The best studied type of nuclear body is the coiled body (CB), so termed due to characteristic morphology and content of a unique protein, p80-coilin (Fig.1). While no specific functions have as yet been assigned to CBs, they contain spliceosome snRNAs and proteins, and also the nucleolar protein fibrillarin. In addition, there is mounting evidence that CBs arise from or are generated near the nucleolus and then migrate into the nucleoplasm. This suggests that as yet undefined links may exist, between nucleolar pre-rRNA processing events and the spliceosome-associated Sm proteins in CBs.We are examining CB and nucleolar changes in three diverse model systems: (1) estrogen stimulated chick liver, (2) normal and neoplastic cells, and (3) polyploid mouse liver.


2012 ◽  
Vol 50 (01) ◽  
Author(s):  
T Pusterla ◽  
J Németh ◽  
I Stein ◽  
L Wiechert ◽  
D Knigin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document