ornithine aminotransferase
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 15)

H-INDEX

27
(FIVE YEARS 2)

Nutrition ◽  
2021 ◽  
pp. 111513
Author(s):  
Tomi Kanninen ◽  
Elizabeth Bryant ◽  
Celide Koerner ◽  
Bernard Gonik

2021 ◽  
Vol 8 ◽  
Author(s):  
Riccardo Montioli ◽  
Giada Sgaravizzi ◽  
Maria Andrea Desbats ◽  
Silvia Grottelli ◽  
Carla Borri Voltattorni ◽  
...  

The deficit of human ornithine aminotransferase (hOAT) is responsible for gyrate atrophy (GA), a rare recessive inherited disorder. Although more than 60 disease-associated mutations have been identified to date, the molecular mechanisms explaining how each mutation leads to the deficit of OAT are mostly unknown. To fill this gap, we considered six representative missense mutations present in homozygous patients concerning residues spread over the hOAT structure. E. coli expression, spectroscopic, kinetic and bioinformatic analyses, reveal that the R154L and G237D mutations induce a catalytic more than a folding defect, the Q90E and R271K mutations mainly impact folding efficiency, while the E318K and C394Y mutations give rise to both folding and catalytic defects. In a human cellular model of disease folding-defective variants, although at a different extent, display reduced protein levels and/or specific activity, due to increased aggregation and/or degradation propensity. The supplementation with Vitamin B6, to mimic a treatment strategy available for GA patients, does not significantly improve the expression/activity of folding-defective variants, in contrast with the clinical responsiveness of patients bearing the E318K mutation. Thus, we speculate that the action of vitamin B6 could be also independent of hOAT. Overall, these data represent a further effort toward a comprehensive analysis of GA pathogenesis at molecular and cellular level, with important relapses for the improvement of genotype/phenotype correlations and the development of novel treatments.


2021 ◽  
Author(s):  
Alia Anwar ◽  
Ke Wang ◽  
Jing Wang ◽  
Lei Shi ◽  
Lipu Du ◽  
...  

Abstract Key Message The drought and salt tolerances of wheat were enhanced by ectopic expression of the Arabidopsis ornithine aminotransferase (AtOAT) encoded gene. The OAT was confirmed to play a role in proline biosynthesis in wheat.Abstract Proline (Pro) accumulation is a common response to both abiotic and biotic stresses in plants. Ornithine aminotransferase (OAT) is pyridoxal-5-phosphate dependent enzyme involved in plant proline biosynthesis. During stress condition, proline is synthesized via glutamate and ornithine pathways. The OAT is the key enzyme in ornithine pathway. In this study, an OAT gene AtOAT from Arabidopsis was expressed in wheat for its functional characterization under drought, salinity and heat stress conditions. We found that the expression of AtOAT enhanced the drought and salt stress tolerances of wheat by increasing the proline content and peroxidase activity. In addition, it was confirmed that the expression of AtOAT also played a partial tolerance to heat stress in the transgenic wheat plants. Moreover, quantitative real-time PCR (qRT-PCR) analysis showed that the transformation of AtOAT up-regulated the expression of the proline biosynthesis associated genes TaOAT, TaP5CS, and TaP5CR, and down-regulated that of the proline catabolism related gene TaP5CDH in the transgenic plants under stress conditions. Moreover, the genes involved in ornithine pathway (Orn-OAT-P5C/GSA-P5CR-Pro) were up-regulated along with the up-regulation of those genes involved in glutamate pathway (Glu-P5CS-P5C/GSA-P5CR-Pro). Therefore, we concluded that the expression of AtOAT enhanced wheat abiotic tolerance via modifying the proline biosynthesis by up-regulating the expression of the proline biosynthesis associated genes and down-regulating that of the proline catabolic gene under stresses condition.


2021 ◽  
Vol 1869 (1) ◽  
pp. 140555
Author(s):  
Riccardo Montioli ◽  
Ilaria Bellezza ◽  
Maria Andrea Desbats ◽  
Carla Borri Voltattorni ◽  
Leonardo Salviati ◽  
...  

2020 ◽  
Vol 6 (41) ◽  
pp. eabb9415 ◽  
Author(s):  
Hiroyuki J. Kanaya ◽  
Sungeon Park ◽  
Ji-hyung Kim ◽  
Junko Kusumi ◽  
Sofian Krenenou ◽  
...  

Sleep behaviors are observed even in nematodes and arthropods, yet little is known about how sleep-regulatory mechanisms have emerged during evolution. Here, we report a sleep-like state in the cnidarian Hydra vulgaris with a primitive nervous organization. Hydra sleep was shaped by homeostasis and necessary for cell proliferation, but it lacked free-running circadian rhythms. Instead, we detected 4-hour rhythms that might be generated by ultradian oscillators underlying Hydra sleep. Microarray analysis in sleep-deprived Hydra revealed sleep-dependent expression of 212 genes, including cGMP-dependent protein kinase 1 (PRKG1) and ornithine aminotransferase. Sleep-promoting effects of melatonin, GABA, and PRKG1 were conserved in Hydra. However, arousing dopamine unexpectedly induced Hydra sleep. Opposing effects of ornithine metabolism on sleep were also evident between Hydra and Drosophila, suggesting the evolutionary switch of their sleep-regulatory functions. Thus, sleep-relevant physiology and sleep-regulatory components may have already been acquired at molecular levels in a brain-less metazoan phylum and reprogrammed accordingly.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2665
Author(s):  
Shinichiro Koike ◽  
Yukihito Kabuyama ◽  
Kodwo Amuzuah Obeng ◽  
Kunio Sugahara ◽  
Yusuke Sato ◽  
...  

Tryptophan has a unique role as a nutritional signaling molecule that regulates protein synthesis in mouse and rat liver. However, the mechanism underlying the stimulating actions of tryptophan on hepatic protein synthesis remains unclear. Proteomic and metabolomic analyses were performed to identify candidate proteins and metabolites likely to play a role in the stimulation of protein synthesis by tryptophan. Overnight-fasted rats were orally administered L-tryptophan and then sacrificed 1 or 3 h after administration. Four differentially expressed protein spots were detected in rat liver at 3 h after tryptophan administration, of which one was identified as an ornithine aminotransferase (OAT) precursor. OAT is the main catabolic enzyme for ornithine, and its expression was significantly decreased by tryptophan administration. The concentration of ornithine was increased in the liver at 3 h after tryptophan administration. Ornithine is a precursor for polyamine biosynthesis. Significantly increased concentrations of polyamines were found in the liver at 3 h after administration of tryptophan. Additionally, enhanced hepatic protein synthesis was demonstrated by oral administration of putrescine. We speculate that the increase in ornithine level through suppression of OAT expression by tryptophan administration may lead to accelerated polyamine synthesis, thereby promoting protein synthesis in the liver.


Sign in / Sign up

Export Citation Format

Share Document