scholarly journals Kinetics of inhibition of endogenous human immunodeficiency virus type 1 reverse transcription by 2',3'-dideoxynucleoside 5'-triphosphate, tetrahydroimidazo-[4,5,1-jk][1,4]-benzodiazepin-2(1H)-thion e, and 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine derivatives.

1992 ◽  
Vol 267 (17) ◽  
pp. 11769-11776
Author(s):  
Z Debyser ◽  
A.M. Vandamme ◽  
R Pauwels ◽  
M Baba ◽  
J Desmyter ◽  
...  
2009 ◽  
Vol 83 (15) ◽  
pp. 7524-7535 ◽  
Author(s):  
Vanessa Arfi ◽  
Julia Lienard ◽  
Xuan-Nhi Nguyen ◽  
Gregory Berger ◽  
Dominique Rigal ◽  
...  

ABSTRACT Infectious viral DNA constitutes only a small fraction of the total viral DNA produced during retroviral infection, and as such its exact behavior is largely unknown. In the present study, we characterized in detail functional viral DNA produced during the early steps of human immunodeficiency virus type 1 infection by analyzing systematically their kinetics of synthesis and integration in different target cells. In addition, we have compared the functional stability of viral nucleoprotein complexes arrested at their pre-reverse transcription state, and we have attempted to measure the kinetics of loss of capsid proteins from viral complexes through the susceptibility of the early phases of infection to cyclosporine, a known inhibitor of the interaction between viral capsid and cyclophilin A. Overall, our data suggest a model in which loss of capsid proteins from viral complexes and reverse transcription occur concomitantly and in which the susceptibility of target cells to infection results from a competition between the ability of the cellular environment to quickly destabilize viral nucleoprotein complexes and the capability of the virus to escape such targeting by engaging the reverse transcription reaction.


1998 ◽  
Vol 72 (6) ◽  
pp. 4633-4642 ◽  
Author(s):  
Helena Schmidtmayerova ◽  
Massimo Alfano ◽  
Gerard Nuovo ◽  
Michael Bukrinsky

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) laboratory strains adapted to T-cell lines, as well as most syncytium-inducing primary isolates, replicate poorly in macrophages, which, beside CD4+ T lymphocytes, are major targets of HIV-1. In the present work, we used a semiquantitative PCR-based technique to study viral entry into cells, kinetics of reverse transcription, and translocation of the viral DNA into the nucleus of macrophages infected with different HIV-1 strains. Our results demonstrate that T-lymphotropic strains efficiently enter macrophages. Entry was inhibited by a monoclonal antibody against CD4 and by stromal cell-derived factor 1α, a natural ligand of CXCR4, suggesting that both CD4 and CXCR4 act as receptors on macrophages for HIV-1 T-lymphotropic strains. Analysis of the kinetics of reverse transcription and nuclear import revealed that the most pronounced differences between T-lymphotropic and macrophagetropic strains occurred at the level of nuclear translocation of viral DNA, although a delay in reverse transcription was also observed. These results suggest that postentry steps are critical for restricted replication of T-lymphotropic HIV-1 strains in macrophages.


Virology ◽  
2002 ◽  
Vol 300 (2) ◽  
pp. 226-235 ◽  
Author(s):  
C.William Hooker ◽  
Julie Scott ◽  
Ann Apolloni ◽  
Emma Parry ◽  
David Harrich

2005 ◽  
Vol 79 (4) ◽  
pp. 2199-2210 ◽  
Author(s):  
Yan Zhou ◽  
Haili Zhang ◽  
Janet D. Siliciano ◽  
Robert F. Siliciano

ABSTRACT In untreated human immunodeficiency virus type 1 (HIV-1) infection, most viral genomes in resting CD4+ T cells are not integrated into host chromosomes. This unintegrated virus provides an inducible latent reservoir because cellular activation permits integration, virus gene expression, and virus production. It remains controversial whether HIV-1 is stable in this preintegration state. Here, we monitored the fate of HIV-1 in resting CD4+ cells by using a green fluorescent protein (GFP) reporter virus carrying an X4 envelope. After virus entry into resting CD4+ T cells, both rescuable virus gene expression, visualized with GFP, and rescuable virion production, assessed by p24 release, decayed with a half-life of 2 days. In these cells, reverse transcription goes to completion over 2 to 3 days, and 50% of the viruses that have entered undergo functional decay before reverse transcription is complete. We distinguished two distinct but closely related factors contributing to loss of rescuable virus. First, some host cells undergo virus-induced apoptosis upon viral entry, thereby reducing the amount of rescuable virus. Second, decay processes directly affecting the virus both before and after the completion of reverse transcription contribute to the loss of rescuable virus. The functional half-life of full-length, integration-competent reverse transcripts is only 1 day. We propose that rapid intracellular decay processes compete with early steps in viral replication in infected CD4+ T cells. Decay processes dominate in resting CD4+ T cells as a result of the slow kinetics of reverse transcription and blocks at subsequent steps. Therefore, the reservoir of unintegrated HIV-1 in recently infected resting CD4+ T cells is highly labile.


Sign in / Sign up

Export Citation Format

Share Document