scholarly journals Reversible association of a 97-kDa protein complex found at the tips of ciliary microtubules with in vitro assembled microtubules.

1993 ◽  
Vol 268 (33) ◽  
pp. 24796-24807
Author(s):  
W Wang ◽  
K Suprenant ◽  
W L Dentler
Parasitology ◽  
1993 ◽  
Vol 107 (4) ◽  
pp. 449-457 ◽  
Author(s):  
M. E. Selkirk ◽  
W. F. Gregory ◽  
R. E. Jenkins ◽  
R. M. Maizels

SUMMARYThe expression of a protein complex designated gp15/400, previously identified via extrinsic iodination of adultBrugia malayi, was examined by labelling all stages found in the mammalian host and immunoprecipitation with a specific antibody raised to a recombinant protein. In this way, gp15/400 could be detected in L3, L4, adult worms and microfilariae recovered from jirds and labelled with Bolton–Hunter reagent. Metabolic labelling indicated that gp15/400 was released into culture medium when adult worms were maintainedin vitro, but at a rate slower than that of gp29, the major soluble cuticular glycoprotein. Immuno-electron microscopy showed that the protein complex was broadly distributed in different tissues, although it was not detectable in the cuticle of adult worms. Dense labelling was observed in the matrix of the basal laminae bordering the hypodermis, somatic musculature and oesophagus, and lower but significant labelling was seen in the cells overlying these extracellular matrices. Hybridization of genomic DNA with a cDNA probe encoding gp15/400 indicated that homologous genes were present inDirofilaria immitisandAcanthocheilonema viteae. The failure to detect related genes in non-filarial nematodes was presumed to be due to divergence beyond the practical limits of detection by nucleic acid probes, as antibody reagents showed that the protein cross-reacted immunologically with ABA-1, a major protein allergen from the body fluid ofAscaris.


Author(s):  
Asriyah Firdausi ◽  
Tri Agus Siswoyo ◽  
Soekadar Wiryadiputra

Research  on  the  development  of  botanical  pesticides  should  be developed  through  new  methods,  such  as  by  inhibiting the  activity  of  digestive enzymes  by  secondary  metabolites.  The  aim  of  this  study  was  to  identify some  of  potential  plants  as  a  source  of  tannin-protein  complexes  to  inhibitthe  activity  of  - amylase.  The  study  of  identification  of  potential  plants producing  the  active  ingredient  tannin-protein  complex  was  divided  into  three stages,  1)  identification  of  potential  plants  producing  tannin,  2)  isolation  of tannin-protein  complexes,  and  3)  in  vitro  test  of  tannin-protein  complexes effect  of  the  -amylase activity.  Some  of  the observed  plants  were  sidaguri  leaf (Sida rhombifolia), melinjo leaf (Gnetum gnemon), gamal leaf (Gliricidia sepium),lamtoro  leaf  (Leucaena  leucocephala) ,  betel  nut  (Areca  catechu) ,  and  crude gambier  (Uncaria  gambir) a s  a  source of  tannins  and  melinjo  seed was  used  asprotein  source.  Betel  nut  and  melinjo  seed  were  the  best  source  of  tannin-protein  complex,  tannin  content  1.77  mg  TAE/mL  with  antioxidant  activity  of  90%,the  ability  to  inhibit  the  activity  of  -amylase by  95%  with  IC 50  values  of 10 mg/mL.Key words: Tannin, protein, -amylase, botanical pesticides,Areca catechu, Gnetum gnemon.


2009 ◽  
Vol 83 (13) ◽  
pp. 6464-6476 ◽  
Author(s):  
Yao-Cheng Ching ◽  
Che-Sheng Chung ◽  
Cheng-Yen Huang ◽  
Yu Hsia ◽  
Yin-Liang Tang ◽  
...  

ABSTRACT Vaccinia virus A26 protein is an envelope protein of the intracellular mature virus (IMV) of vaccinia virus. A mutant A26 protein with a truncation of the 74 C-terminal amino acids was expressed in infected cells but failed to be incorporated into IMV (W. L. Chiu, C. L. Lin, M. H. Yang, D. L. Tzou, and W. Chang, J. Virol 81:2149-2157, 2007). Here, we demonstrate that A27 protein formed a protein complex with the full-length form but not with the truncated form of A26 protein in infected cells as well as in IMV. The formation of the A26-A27 protein complex occurred prior to virion assembly and did not require another A27-binding protein, A17 protein, in the infected cells. A26 protein contains six cysteine residues, and in vitro mutagenesis showed that Cys441 and Cys442 mediated intermolecular disulfide bonds with Cys71 and Cys72 of viral A27 protein, whereas Cys43 and Cys342 mediated intramolecular disulfide bonds. A26 and A27 proteins formed disulfide-linked complexes in transfected 293T cells, showing that the intermolecular disulfide bond formation did not depend on viral redox pathways. Finally, using cell fusion from within and fusion from without, we demonstrate that cell surface glycosaminoglycan is important for virus-cell fusion and that A26 protein, by forming complexes with A27 protein, partially suppresses fusion.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1427-1431 ◽  
Author(s):  
N Fortier ◽  
LM Snyder ◽  
F Garver ◽  
C Kiefer ◽  
J McKenney ◽  
...  

Abstract In vitro induced oxidative damage to normal human RBCs has previously been shown to result in increased membrane rigidity as a consequence of the generation of a protein complex between hemoglobin and spectrin. In order to determine if in vivo generated hemoglobin-spectrin complexes may play a role in increased membrane rigidity of certain pathologic red cells, we measured both these parameters in membranes prepared from hereditary xerocytosis (Hx), sickle cell disease (Sc), and red cells from thalassemia minor (beta thal). Membranes were prepared from density-fractionated red cells, and membrane deformability was measured using an ektacytometer. Hemoglobin-spectrin complex was determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel analysis, as well as by Western blot analysis using a monoclonal antibody against the beta- subunit of hemoglobin. For these three types of pathologic red cells, progressive cellular dehydration was associated with increased membrane rigidity and increased content of hemoglobin-spectrin complex. Moreover, the increase in membrane rigidity appeared to be directly related to the quantity of hemoglobin-spectrin complex associated with the membrane. Our findings imply that hemoglobin-spectrin complex is generated in vivo, and this in turn results in increased membrane rigidity of certain pathologic red cells. The data further suggest that oxidative crosslinking may play an important role in the pathophysiology of certain red cell disorders.


1969 ◽  
Vol 24 (11) ◽  
pp. 1442-1447 ◽  
Author(s):  
J. J. Picard ◽  
J. F. Heremans

The colloidal dye lithium carmine was added in vitro to normal human serum. Electrophoretic experiments showed that the dye was associated mainly with α2-globulins, small amounts with the albumin and only traces with the γ-globulins. The main complex was eluted with the macroglobulin peak obtained by gel filtration on Sephadex G-200 and sedimented in the heavy fraction on density gradient ultracentrifugation. The dye-protein complex could be precipitated with an antiserum specific for a2-macroglobulin. Gel filtration of a solution of pure a2-macroglobulin, to which lithium carmine was added, demonstrated that the dye was bound to this protein.


Sign in / Sign up

Export Citation Format

Share Document