The In Vitro Reversible Association of the Regulatory and Catalytic Subunits of Quinate: NAD+ Oxidoreductase

Author(s):  
Annick Graziana ◽  
Marietta Dillenschneider ◽  
Martine Charpenteau ◽  
Raoul Ranjeva
1999 ◽  
Vol 189 (11) ◽  
pp. 1839-1845 ◽  
Author(s):  
Zhi-Wei Li ◽  
Wenming Chu ◽  
Yinling Hu ◽  
Mireille Delhase ◽  
Tom Deerinck ◽  
...  

The IκB kinase (IKK) complex is composed of three subunits, IKKα, IKKβ, and IKKγ (NEMO). While IKKα and IKKβ are highly similar catalytic subunits, both capable of IκB phosphorylation in vitro, IKKγ is a regulatory subunit. Previous biochemical and genetic analyses have indicated that despite their similar structures and in vitro kinase activities, IKKα and IKKβ have distinct functions. Surprisingly, disruption of the Ikkα locus did not abolish activation of IKK by proinflammatory stimuli and resulted in only a small decrease in nuclear factor (NF)-κB activation. Now we describe the pathophysiological consequence of disruption of the Ikkβ locus. IKKβ-deficient mice die at mid-gestation from uncontrolled liver apoptosis, a phenotype that is remarkably similar to that of mice deficient in both the RelA (p65) and NF-κB1 (p50/p105) subunits of NF-κB. Accordingly, IKKβ-deficient cells are defective in activation of IKK and NF-κB in response to either tumor necrosis factor α or interleukin 1. Thus IKKβ, but not IKKα, plays the major role in IKK activation and induction of NF-κB activity. In the absence of IKKβ, IKKα is unresponsive to IKK activators.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3931-3931
Author(s):  
Thomas G. Diacovo ◽  
William Vermi ◽  
Vivian Montgrain ◽  
Jason Douangpanya ◽  
Teresa Doggett ◽  
...  

Abstract Class I phosphoinositide 3-kinases (PI3Ks), consisting of PI3Kα, β, γ and δ, are a family of intracellular signalling molecules that play an important role in both innate and adaptive immune responses. In thymocytes, however, their role is less clear as PI3Kγ, but not other class I members, has been postulated to be partially involved in pre-TcR-dependent differentiation without effecting overall T cell numbers. We now report that PI3Kγ in conjunction with its delta counterpart are essential for thymocyte survival and ultimately T cell production. Surprisingly, genetic deletion of the both p110γ and p110δ catalytic subunits resulted in a dramatic reduction in thymic size, cellularity, and lack of cortico-medullary differentiation. Total thymocyte counts in these animals were 27-fold less than observed for wild-type (WT) controls due to a diminished number of DP cells and was associated with T cell depletion in both peripheral blood and secondary lymphoid organs. This phenotype could also be recapitulated in vitro as incubation of thymi harvested from day 14 p110γ−/− embryos with the p110δ specific inhibitor IC87114, but not vehicle control, yielded identical results. Moreover, the observed reduction in the DP population appears to be intrinsic to thymocytes as reconstitution of animals deficient in both p110γ and p110δ catalytic subunits with WT fetal liver cells restored the proportions of DN, DP, SP to that observed in WT controls. The observed defects, however, appear to be due to an excessive amount of apoptosis of the DP thymocyte population, while TCRbeta expression, pre-TCR selection and DP cell production appear to proceed unperturbed. Thus, this study provides evidence that these two distinct class I PI3Ks isoforms work in concert to protect developing thymocytes from apoptotic signals rather than by participating directly in thymocyte differentiation.


1973 ◽  
Vol 136 (3) ◽  
pp. 649-658 ◽  
Author(s):  
Alan V. Emes ◽  
Harold Hassall

1. Soluble and mitochondrial forms of histidine–pyruvate aminotransferase were separated from rat liver preparations by chromatography on DEAE-cellulose. 2. These enzymes were characterized with respect to substrate specificity, substrate affinity, pH optimum, stability and molecular weight by chromatography on Sephadex G-200. 3. Each enzyme has a relatively broad specificity showing significant activity towards l-phenylalanine and l-tyrosine and catalysing transamination with a number of monocarboxylic 2-oxo acids. 2-Oxoglutarate is not a substrate for either enzyme. 4. The molecular weights of the two enzymes, by chromatography on Sephadex G-200, are in the range 130000–150000. 5. The formation in vitro of imidazolyl-lactate from imidazolylpyruvate and NADH was demonstrated by using liver preparations. 6. From a study of imidazolyl-lactate–NAD+oxidoreductase activity after electrophoresis of liver preparations on polyacrylamide gel, and from an examination of the activity of l-lactate–NAD+oxidoreductase (EC 1.1.1.27) towards imidazolylpyruvate, it is concluded that this latter enzyme is responsible for the formation of imidazolyl-lactate in the liver. 7. Preparations of bacteria obtained from rat faeces form imidazolylpropionate from l-histidine and urocanate without further subculture. The amount of imidazolylpropionate formed is increased under anaerobic conditions and more so in an atmosphere of H2. It is suggested that the gut flora of the rat contribute largely, if not exclusively, to the formation of imidazolylpropionate normally found in the urine.


2005 ◽  
Vol 201 (10) ◽  
pp. 1677-1687 ◽  
Author(s):  
Maria Grazia Ruocco ◽  
Shin Maeda ◽  
Jin Mo Park ◽  
Toby Lawrence ◽  
Li-Chung Hsu ◽  
...  

Transcription factor, nuclear factor κB (NF-κB), is required for osteoclast formation in vivo and mice lacking both of the NF-κB p50 and p52 proteins are osteopetrotic. Here we address the relative roles of the two catalytic subunits of the IκB kinase (IKK) complex that mediate NF-κB activation, IKKα and IKKβ, in osteoclast formation and inflammation-induced bone loss. Our findings point out the importance of the IKKβ subunit as a transducer of signals from receptor activator of NF-κB (RANK) to NF-κB. Although IKKα is required for RANK ligand-induced osteoclast formation in vitro, it is not needed in vivo. However, IKKβ is required for osteoclastogenesis in vitro and in vivo. IKKβ also protects osteoclasts and their progenitors from tumor necrosis factor α–induced apoptosis, and its loss in hematopoietic cells prevents inflammation-induced bone loss.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 612-612
Author(s):  
Ajita V. Singh ◽  
Madhavi Bandi ◽  
Monette Aujay ◽  
Susan Demo ◽  
Teru Hideshima ◽  
...  

Abstract Abstract 612 Background: Therapeutic targeting of Ubiquitin-Proteasome pathway is exemplified by the recent FDA approval of dipeptidyl boronic acid bortezomib first-in-class proteasome inhibitor for the treatment of multiple myeloma (MM). As with other agents, dose-limiting toxicities and the development of drug resistance limit its long-term utility. The β5, β1 and β2 catalytic subunits within the 26S proteasome mediate chymotrypsin-like, caspase-like, and trypsin-like activities, respectively. Importantly, these catalytic subunits have corresponding immunoproteasome components LMP-7, LMP-2 and multicatalytic endopeptidase complex subunit-1 (MECL-1), which regulate immune cell function and cytokine production; however, the role of the immunoproteasome in MM cells is still unclear. Recent studies have therefore focused on the discovery and development of small molecule inhibitors of the immunoproteasomes, which will both delineate the function of immunproteasomes and allow for specific therapeutic targeting of the UPS in order to reduce off-target activities and associated toxicities. Here, we examined PR-924, an LMP-7-selective peptide-ketoepoxide proteasome inhibitor related to carfilzomib. PR-924, like carfilzomib, contains a ketopoxide pharmacophore that covalently modifies proteasomal N-terminal threonine active sites. We examined the effects of PR-924 in MM cell lines and primary patient cells in vitro. To determine the in vivo efficacy of PR-924, we utilized two xenograft models of human MM in SCID mice, a subcutaneous tumor plasmacytoma model and the SCID-hu model, which best reflects the human MM-BM microenvironment in vivo. Methods and Model: We utilized MM.1S, MM.1R, RPMI-8226, U266, DOX40, KMS12, LR-5, OPM1, OPM2 and INA-6 (an IL-6 dependent) human MM cell lines, as well as purified tumor cells from patients with MM relapsing after prior therapies including lenalidomide or bortezomib. Cell viability and apoptosis assays were performed using Trypan blue, MTT and Annexin V staining. Immunoblot analysis was performed using antibodies to caspase-8, caspase-9, caspase-3, caspase-7, PARP, Bcl-2, BID, or GAPDH. For tumor xenograft studies, CB-17 SCID male mice (n = 10; 5 mice/each group) were subcutaneously inoculated with 5.0 × 106 MM.1S cells in 100 microliters of serum-free RPMI-1640 medium. When tumors were measurable (∼150 mm3) 2-3 weeks after MM cell injection, mice were injected IV with either PR-924 (6 mg/kg BW) or vehicle twice weekly. Mice were sacrificed when their tumors reached >2 cm3. In the SCID-hu model, 2 × 106 INA-6 cells were injected directly into human bone chips implanted subcutaneously in SCID mice (n=10: 5 mice/EA group), and MM cell growth was assessed by serial measurements of circulating levels of soluble human interleukin-6 receptor (shulIL6R) in mouse serum. Statistical significance of differences observed in PR-924 vs. vehicle treated mice was determined using a Student t test. Results: PR-924 significantly inhibits growth of all the MM cell lines in a time- and dose-dependent manner (IC50 range: 3-5 μM; P <0.005 for all cell lineIt alsos. reduced the viability of primary patient cells (P < 0.05; n=5), without significant effects on normal peripheral mononuclear cells. The PR-924-triggered decrease in MM cell viability is due to apoptosis, as evidenced by Annexin V/PI staining. Moreover, PR-924-induced apoptosis in MM.1S and MM.1R MM cells is associated with activation of caspase-3, caspase-8, caspase-9, caspase-7, BID and PARP. In vivo PR-924 triggered significant tumor growth inhibition in tumor plasmacytoma xenografts (2.3 fold decrease in tumor volume in mice receiving PR-924 versus mice injected with vehicle alone; P value = 0.01). Similarly, a significant reduction in the shuIL6R levels (3.4 fold decrease; P value = 0.02) was observed in mice treated with PR-924 versus vehicle-control. PR-924 treatment was well tolerated, as evidenced by the lack of weight loss even after three weeks of treatment. Importantly, treatment of tumor bearing mice with PR-924, but not vehicle alone, significantly prolonged survival (P < 0.005). Conclusion: Our preclinical findings establish immunoproteasome LMP-7 as a novel therapeutic target in MM. Disclosures: Aujay: Proteolix: Employment, Equity Ownership. Demo:Proteolix: Employment, Equity Ownership.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Joanna Abi Habib ◽  
Etienne De Plaen ◽  
Vincent Stroobant ◽  
Dusan Zivkovic ◽  
Marie-Pierre Bousquet ◽  
...  

Abstract The proteasome is responsible for selective degradation of proteins. It exists in mammalian cells under four main subtypes, which differ by the combination of their catalytic subunits: the standard proteasome (β1–β2–β5), the immunoproteasome (β1i–β2i–β5i) and the two intermediate proteasomes (β1–β2–β5i and β1i–β2–β5i). The efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins remains unclear. Using cells expressing exclusively one proteasome subtype, we observed that ubiquitinated p21 and c-­myc were degraded at similar rates, indicating that the four 26S proteasomes degrade ubiquitinated proteins equally well. Under oxidative stress, we observed a partial dissociation of 26S into 20S proteasomes, which can degrade non-ubiquitinated oxidized proteins. Oxidized calmodulin and hemoglobin were best degraded in vitro by the three β5i-containing 20S proteasomes, while their native forms were not degraded. Circular dichroism analyses indicated that ubiquitin-independent recognition of oxidized proteins by 20S proteasomes was triggered by the disruption of their structure. Accordingly, β5i-containing 20S proteasomes degraded unoxidized naturally disordered protein tau, while 26S proteasomes did not. Our results suggest that the three β5i-containing 20S proteasomes, namely the immunoproteasome and the two intermediate proteasomes, might help cells to eliminate proteins containing disordered domains, including those induced by oxidative stress.


Microbiology ◽  
2011 ◽  
Vol 157 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Vinayak Singh ◽  
Deepak Chandra ◽  
Brahm S. Srivastava ◽  
Ranjana Srivastava

Acetohydroxyacid synthase (AHAS) is a biosynthetic enzyme essential for de novo synthesis of branched-chain amino acids. The genome sequence of Mycobacterium tuberculosis revealed genes encoding four catalytic subunits, ilvB1 (Rv3003c), ilvB2 (Rv3470c), ilvG (Rv1820) and ilvX (Rv3509c), and one regulatory subunit, ilvN (Rv3002c), of AHAS. All these genes were found to be expressed in M. tuberculosis growing in vitro. Each AHAS subunit gene was cloned and expressed in Escherichia coli. AHAS activity of IlvB1 and IlvG was found in cell-free lysates and with recombinant purified proteins. Kinetic studies with purified IlvG revealed positive cooperativity towards substrate and cofactors. To understand the role of the catalytic subunits in the biology of M. tuberculosis, expression of AHAS genes was analysed in different physiological conditions. ilvB1, ilvB2 and ilvG were differentially expressed. The role of ilvB1 in persistence is known, but the upregulation of ilvB2 and ilvG in extended stationary phase, ex vivo, and in acid stress and hypoxic environments, suggests the relevance of AHAS enzymes in the metabolism and survival of M. tuberculosis by functioning as catabolic AHAS. These enzymes are therefore potential targets for drug development.


1994 ◽  
Vol 220 (1) ◽  
pp. 217-223 ◽  
Author(s):  
Kari Bente FOSS ◽  
Brynjar LANDMARK ◽  
Bjorn Steen SKALHEGG ◽  
Kjetil TASKEN ◽  
Egil JELLUM ◽  
...  

1988 ◽  
Vol 251 (2) ◽  
pp. 461-466 ◽  
Author(s):  
I Vidal ◽  
J González ◽  
A Bernardo ◽  
R Martín

A method was developed to purify diacetyl-reducing enzymes from Staphylococcus aureus. Two enzymes capable of catalysing diacetyl reduction were isolated, neither of which turned out to be a specific diacetyl reductase. One of them is a lactate dehydrogenase similar to the one from Staphylococcus epidermidis, which accepts diacetyl, although poorly. The other one uses as coenzyme beta-NAD and reduces uncharged alpha-dicarbonyls with more than three carbon atoms (especially the alpha-diketones diacetyl and pentane-2,3-dione), producing the L(+) form of the corresponding alpha-hydroxycarbonyls. This enzyme has an Mr of 68,000 and is, most probably, a monomer. Its optimum pH is 6.0. Its shows a high affinity for NADH and a rather low one for diacetyl, which, at least in vitro, does not seem to be as good a substrate as pentane-2,3-dione. We propose for it the systematic name L-alpha-hydroxyketone: NAD+ oxidoreductase and the recommended name of alpha-diketone reductase (NAD). We also suggest that the diacetyl reductase entry in the I.U.B. classification be suppressed.


Sign in / Sign up

Export Citation Format

Share Document