scholarly journals Twisted Gastrulation Modulates Bone Morphogenetic Protein-induced Collagen II and X Expression in Chondrocytes in Vitro and in Vivo

2006 ◽  
Vol 281 (42) ◽  
pp. 31790-31800
Author(s):  
Martina Schmidl ◽  
Nadia Adam ◽  
Cordula Surmann-Schmitt ◽  
Takako Hattori ◽  
Michael Stock ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Li ◽  
Yunjia Song ◽  
Aobo Ma ◽  
Changyi Li

Although titanium (Ti) alloys have been widely used as implant materials, the bioinertness of pristine Ti impairs their bioactivity and early osseointegration. In the present work, we prepared TiO2 nanotubes (TNT) layer on the titanium (Ti) surface by anodic oxidation. The anodized surface was functionalized with human bone morphogenetic protein-2 coating to form the hBMP-2/TNT surface. The release behavior of hBMP-2 on the hBMP-2/TNT surface displayed a controlled and sustained pattern, compared to that on the hBMP-2/Ti surface, which showed a rapid release. In vitro cellular activity tests demonstrated that both TNT and hBMP-2/Ti surfaces, particularly the hBMP-2/TNT surface, enhanced adhesion, proliferation, and differentiation of osteoblast cells. Increased cell adhesion, improved cytoskeleton organization, and immunofluorescence staining of vinculin were observed on the modified surfaces. The TNT, hBMP-2/Ti, and hBMP-2/TNT surfaces, especially the hBMP-2/TNT surface, further displayed an upregulated gene expression of adhesion and osteogenic markers vinculin, collagen type 1, osteopontin, and osteocalcin, compared to the pristine Ti surface. In vivo experiments using a rat model demonstrated that the TNT and hBMP-2/Ti surfaces, in particular the hBMP-2/TNT surface, improved osseointegration and showed a superior bone bonding ability compared to Ti. Our study revealed a synergistic role played by TiO2 nanotubes nanotopography and hBMP-2 in promoting initial osteoblast adhesion, proliferation, differentiation, and osseointegration, thus suggesting a promising method for better modifying the implant surface.


Spine ◽  
2018 ◽  
Vol 43 (11) ◽  
pp. E616-E624 ◽  
Author(s):  
Sadaaki Kanayama ◽  
Takashi Kaito ◽  
Kazuma Kitaguchi ◽  
Hiroyuki Ishiguro ◽  
Kunihiko Hashimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document