scholarly journals Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism. VOLUME 284 (2009) PAGES 158-164

2009 ◽  
Vol 284 (12) ◽  
pp. 8208
Author(s):  
Peter Belenky ◽  
Kathryn C. Christensen ◽  
Francesca Gazzaniga ◽  
Alexandre A. Pletnev ◽  
Charles Brenner
2020 ◽  
Vol 18 (15) ◽  
pp. 2877-2885
Author(s):  
Faisal Hayat ◽  
Marie E. Migaud

O5′ amino acid ester conjugates of nicotinamide riboside, generated via a reduced intermediate, are stable to purine nucleoside phosphorylase.


1990 ◽  
Vol 55 (12) ◽  
pp. 2987-2999 ◽  
Author(s):  
Katarina Šedivá ◽  
Ivan Votruba ◽  
Antonín Holý ◽  
Ivan Rosenberg

Purine nucleoside phosphorylase (PNP) from mouse leukemia cells L1210 was purified to homogeneity by a combination of ion exchange and affinity chromatography using AE-Sepharose 4B and 9-(p-succinylaminobenzyl)hypoxanthine as the matrix and the ligand, respectively. The native enzyme has a molecular weight of 104 000 and consists of three subunits of equal molecular weight of 34 000. The results of isoelectric focusing showed that the enzyme is considerably microheterogeneous over the pI-range 4.0-5.8 and most likely consists of eight isozymes. The temperature and pH-optimum of phosphorolysis, purine nucleoside synthesis and also of transribosylation is identical, namely 55 °C and pH 7.4. The transribosylation reaction proceeds in the presence of phosphate only. The following Km-values (μmol l-1) were determined for phosphorolysis: inosine 40, 2'-deoxyinosine 47, guanosine 27, 2'-deoxyguanosine 32. The Km-values (μmol l-1) of purine riboside and deoxyriboside synthesis are lower than the values for phosphorolysis (hypoxanthine 18 and 34, resp., guanine 8 and 11, resp.). An affinity lower by one order shows PNP for (-D-ribose-1-phosphate, (-D-2-deoxyribose-1-phosphate (Km = 200 μmol l-1 in both cases) and phosphate (Km = 805 μmol l-1). The substrate specificity of the enzyme was also studied: positions N(1), C(2) and C(8) are decisive for the binding of the substrate (purine nucleoside).


1986 ◽  
Vol 3 (4) ◽  
pp. 353-359 ◽  
Author(s):  
Ger T. Rijkers ◽  
Ben J. M. Zegers ◽  
Leo J. M. Spaapen ◽  
Derk H. Rutgers ◽  
John J. Roord ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document