scholarly journals Lactose Synthesis in the Mammary Gland: Lactose Synthase and the Work of Robert L. Hill

2006 ◽  
Vol 281 (6) ◽  
pp. e6-e8
Author(s):  
Nicole Kresge ◽  
Robert D. Simoni
1995 ◽  
Vol 62 (2) ◽  
pp. 221-236 ◽  
Author(s):  
Craig S. Atwood ◽  
Peter E. Hartmann

SUMMARYThe concentrations of lactose, glucose, glucose 6-phosphate, glucose 1-phosphate, UDPglucose, UDPgalactose, UDP, UMP, inorganic phosphate, ADP and AMP (metabolites involved in the lactose synthesis pathway), and cAMP, galactose and sodium were measured in the mammary secretion from four or five mammary glands on each of six sows during the first 5 d post weaning. The concentrations of lactose, glucose and galactose were also measured in plasma during this time. Following weaning, the rapid increase in the concentrations of glucose 6-phosphate and UDPgalactose suggested that the rate of lactose synthesis was regulated by the inhibition of hexokinase and/or lactose synthase, while the decrease in glucose and AMP indicated a subsequent decline in glucose and ATP utilization. The rapid increase in glucose 6-phosphate which plays a pivotal role as a substrate for both lactose and de novo fatty acid synthesis, and the rapid decrease in AMP which reflects ATP utilization, were good markers of decreased metabolic activity. These rapid changes in the metabolic activity of the mammary glands were not observed in a second weaning study when two piglets were removed from selected mammary glands for periods up to 5 h during established lactation. Since concentrations of lactogenic hormones remain elevated following partial weaning, but fall following total weaning (Rojkittikhun et al. 1991), these differences in mammary gland metabolism indicate that endocrine rather than autocrine mechanisms are controlling lactose and fat synthesis during the initial stages of total weaning.


1977 ◽  
Vol 168 (3) ◽  
pp. 423-433 ◽  
Author(s):  
N J Kuhn ◽  
A White

1. UDP-galactose utilization by isolated Golgi vesicles or rat mammary gland synthesizing lactose causes accumulation of UMP but not UDP, although UDP is the immediate product of lactose synthase (EC 2.4.1.22). 2. This can be ascribed to a nucleoside diphosphatase (EC 3.6.1.6), specific for UDP, GDP and IDP, activated by bivalent metal ions and apparently located on the luminal face of the Golgi membrane. 3. The uridine diphosphatase activity exceeds the total galactosyltransferase activity 5-fold, and is estimated to maintain UDP at about 14 micrometer within the Golgi lumen. 4. Evidence is given that UMP, but not UDP, penetrates the membrane and that UMP is rephosphorylated to UDP by a UMP kinase located in the cytosol. 5. Golgi-cytosol relationships with respect to lactose synthesis are formulated in terms of a uridine nucleotide cycle which throws new light on the energy cost and possible regulation of lactose synthesis.


1975 ◽  
Vol 148 (1) ◽  
pp. 77-84 ◽  
Author(s):  
N J Kuhn ◽  
A White

1. At short incubation times, and under suitable osmotic conditions, the lactose synthesized by Golgi-derived vesicles of rat mammary gland is 85-90% particulate. Evidence is presented for its occlusion within the lumen of the vesicles. 2. Ovalbumin is used as a bulky active-site inhibitor to show that the active site of lactose synthase lies on the inner face of the Golgi membrane. 3. Phlorrhizin and phloretin inhibit lactose synthesis by such vesicles, indicating the presence of a glucose-transport system. 4. The relationship of this topography to the synthesis of N-acetylneuraminyl-lactose and to the secretion of milk sugars is discussed.


1953 ◽  
Vol 201 (1) ◽  
pp. 85-91 ◽  
Author(s):  
E. Dimant ◽  
Vearl R. Smith ◽  
Henry A. Lardy

1981 ◽  
Vol 194 (1) ◽  
pp. 173-177 ◽  
Author(s):  
M D White ◽  
N J Kuhn ◽  
S Ward

1. Purified Golgi-membrane vesicles of lactating-rat mammary gland were penetrated by glucose. 3-O-methylglucose, mannose, fructose, sorbitol and mannitol, but not by lactose or sucrose. 2. The kinetics of mannitol uptake and release were followed at 2-6 degrees C with the aid of fine filters (0.45 micrometers pore size) to separate the vesicles from the medium. 3. Mannitol efflux exhibited apparent first-order kinetics with k approximately 1 min-1. Neither saturability, nor inhibition by excess sorbitol or glucose, could be observed. 4. Mannitol efflux at 18 degrees C was about seven times faster than at 1 degrees C, and rates at higher temperatures were too fast to be measured. The rate of glucose efflux at 2-6 degrees C exceeded that of mannitol severalfold. 5. These findings imply a channel or carrier of definite, but limited, specificity straddling the Golgi membrane and able to supply glucose for lactose synthesis.


1995 ◽  
Vol 62 (2) ◽  
pp. 207-220 ◽  
Author(s):  
Craig S. Atwood ◽  
Janine K. Toussaint ◽  
Peter E. Hartmann

SUMMARYThe concentrations of lactose, glucose, glucose 6-phosphate, glucose 1-phosphate, UDPglucose, UDPgalactose, UDP, UMP, inorganic phosphate, ADP and AMP (metabolites involved in the lactose synthesis pathway), and cAMP, galactose and fructose were measured in the mammary secretion from sucked (n = 9) and unsucked (n = 4) mammary glands of nine sows during the first 5 d post partum. The concentrations of lactose, glucose, galactose and fructose were also measured in plasma during this time. The progressive increase in the concentration of lactose, and changes in the concentrations of cellular metabolites in the mammary secretion from sucked glands were consistent with an increase in the metabolic activity of those glands during lactogenesis II. In contrast, unsucked glands showed a progressive decrease in the concentration of lactose, while the concentrations of cellular metabolites in the milk generally remained unchanged. These results indicated that there was no increase in the metabolic activity of unsucked glands (no increase in lactose synthesis or utilization of glucose and ATP) and that the rate of lactose synthesis prior to milk removal was limited by the availability of glucose and/or UDPgalactose. Therefore, the removal of colostrum from the mammary gland was necessary for an increase in the rate of lactose synthesis (and probably de novo fatty acid synthesis) and implies that autocrine mechanisms are operating to control the rate of milk synthesis during lactogenesis in the sow. The low concentration of glucose in colostrum compared with that in plasma is discussed in view of the paracellular pathway.


1953 ◽  
Vol 205 (2) ◽  
pp. 527-533 ◽  
Author(s):  
G.W. Kittinger ◽  
F.J. Reithel

Nature ◽  
1970 ◽  
Vol 228 (5276) ◽  
pp. 1105-1106 ◽  
Author(s):  
T. W. KEENAN ◽  
D. JAMES MORRÉ ◽  
R. D. CHEETHAM

Sign in / Sign up

Export Citation Format

Share Document