Supercondensed structure of plasmid pBR322 DNA in an Escherichia coli DNA topoisomerase II mutant

1990 ◽  
Vol 216 (2) ◽  
pp. 195-199 ◽  
Author(s):  
Xitai Huang ◽  
Xin Chen
2009 ◽  
Vol 56 (1) ◽  
Author(s):  
Krzysztof Kik ◽  
Kazimierz Studzian ◽  
Małgorzata Wasowska-Łukawska ◽  
Irena Oszczapowicz ◽  
Leszek Szmigiero

This work was undertaken to compare cytotoxicity, DNA damaging properties and effect on DNA cleavage by topoisomerase II of the anthracycline drug doxorubicin (DOX) and its two derivatives with a formamidino group containing a cyclic amine moiety such as morpholine (DOXM) or hexamethyleneimine (DOXH). The tetrazolium dye colorimetric assay was used to determine the cytotoxic activity of anthracyclines toward L1210 leukemia cells. DNA damage was measured by alkaline elution technique. The effect of anthracyclines on DNA cleavage was studied in a cell-free system containing supercoiled pBR322 DNA and purified human topoisomerase II. The cytotoxicity data and the results of studies on the mechanism of DNA break formation by anthracyclines at the cellular level and in the cell-free system showed that the presence of the formamidino group in the doxorubicin molecule reduced its ability to stimulate DNA cleavage by DNA topoisomerase II. DNA topoisomerase II is not a primary cellular target for DOXM or DOXH. An advantageous feature of formamidinoanthracyclines is their mechanism of cytotoxic action which is not related to the inhibition of DNA topoisomerase II. Therefore this class of anthracyclines seems to be a good source for selection of an anticancer drug directed toward cancer cells with the developed multidrug resistance attributed to the presence of altered DNA topoisomerase II.


Author(s):  
Jason R. Swedlow ◽  
Neil Osheroff ◽  
Tim Karr ◽  
John W. Sedat ◽  
David A. Agard

DNA topoisomerase II is an ATP-dependent double-stranded DNA strand-passing enzyme that is necessary for full condensation of chromosomes and for complete segregation of sister chromatids at mitosis in vivo and in vitro. Biochemical characterization of chromosomes or nuclei after extraction with high-salt or detergents and DNAse treatment showed that topoisomerase II was a major component of this remnant, termed the chromosome scaffold. The scaffold has been hypothesized to be the structural backbone of the chromosome, so the localization of topoisomerase II to die scaffold suggested that the enzyme might play a structural role in the chromosome. However, topoisomerase II has not been studied in nuclei or chromosomes in vivo. We have monitored the chromosomal distribution of topoisomerase II in vivo during mitosis in the Drosophila embryo. This embryo forms a multi-nucleated syncytial blastoderm early in its developmental cycle. During this time, the embryonic nuclei synchronously progress through 13 mitotic cycles, so this is an ideal system to follow nuclear and chromosomal dynamics.


2010 ◽  
Vol 999 (999) ◽  
pp. 1-14 ◽  
Author(s):  
K. Chikamori ◽  
A.G. Grozav ◽  
T. Kozuki ◽  
D. Grabowski ◽  
R. Ganapathi ◽  
...  

1986 ◽  
Vol 261 (17) ◽  
pp. 8063-8069
Author(s):  
R A Heller ◽  
E R Shelton ◽  
V Dietrich ◽  
S C Elgin ◽  
D L Brutlag

2016 ◽  
Vol 103 ◽  
pp. 29-39 ◽  
Author(s):  
Ka C. Lee ◽  
Rebecca L. Bramley ◽  
Ian G. Cowell ◽  
Graham H. Jackson ◽  
Caroline A. Austin

Sign in / Sign up

Export Citation Format

Share Document