Actinide distribution in a stainless steel–15 wt% zirconium high-level nuclear waste form

2000 ◽  
Vol 279 (2-3) ◽  
pp. 234-244 ◽  
Author(s):  
D.D Keiser ◽  
D.P Abraham ◽  
W Sinkler ◽  
J.W Richardson ◽  
S.M McDeavitt
1981 ◽  
Vol 6 ◽  
Author(s):  
K.D. Reeve ◽  
D.M. Levins ◽  
E.J. Ramm ◽  
J.L. Woolfrey ◽  
W.J. Buykx

ABSTRACTThe current status of SYNROC C research and development by the Australian Atomic Energy Commission is reviewed. A non-radioactive fabrication demonstration line designed to produce 10 cm o.d., 90 cm long, cylinders of SYNROC canned in stainless steel by the method of in-can hot pressing is being commissioned. Leach tests are proving the excellent leach resistance of SYNROC. Accelerated radiation damage testing using fast neutrons has simulated storage times of up to 6.7×105 years. Thermophysical properties of SYNROC have been measured over the temperature range 20–650°C.


1999 ◽  
Vol 556 ◽  
Author(s):  
D. P. Abraham ◽  
L. J. Simpson ◽  
M. J. Devries ◽  
S. M. Mcdeavitt

AbstractStainless steel-zirconium (SS-Zr) alloys have been developed as waste forms for the disposal of metallic waste generated during the electrometallurgical treatment of spent nuclear fuel. The waste forms incorporate irradiated cladding hulls, components of the alloy fuel, noble metal fission products, and actinide elements. The baseline waste form is a stainless steel- 15 wt% zirconium (SS-15Zr) alloy. This article presents microstructures and some of the corrosion studies being conducted on the waste form alloys. Electrochemical corrosio n, immersion corrosion, and vapor hydration tests have been performed on various alloy compositions to evaluate corrosion behavior and resistance to selective leaching of simulated fission products. The SS-Zr waste forms immobilize and retain fission products very effectively and show potential for acceptance as high-level nuclear waste forms.


2013 ◽  
Vol 3 (1) ◽  
pp. 60-69 ◽  
Author(s):  
Hamid Aït Abderrahim ◽  
Didier De Bruyn ◽  
Gert Van den Eynde ◽  
Sidney Michiels

2021 ◽  
pp. 153423
Author(s):  
José Marcial ◽  
Jaroslav Kloužek ◽  
Miroslava Vernerová ◽  
Pavel Ferkl ◽  
SeungMin Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document