waste tanks
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ruolong Qi ◽  
Wenfeng Liang

Purpose Nuclear waste tanks need to be cut into pieces before they can be safely disposed of, but the cutting process produces a large amount of aerosols with radiation, which is very harmful to the health of the operator. The purpose of this paper is to establish an intelligent strategy for an integrated robot designed for measurement and cutting, which can accurately identify and cut unknown nuclear waste tanks and realize autonomous precise processing. Design/methodology/approach A robot system integrating point cloud measurement and plasma cutting is designed in this paper. First, accurate calibration methods for the robot, tool and hand-eye system are established. Second, for eliminating the extremely scattered point cloud caused by metal surface refraction, an omnidirectional octree data structure with 26 vectors is proposed to extract the point cloud model more accurately. Then, a minimum bounding box is calculated for limiting the local area to be cut, the local three-dimensional shape of the nuclear tank is fitted within the bounding box, in which the cutting trajectories and normal vectors are planned accurately. Findings The cutting precision is verified by changing the tool into a dial indicator in the simulation and the experiment process. The octree data structure with omnidirectional pointing vectors can effectively improve the filtering accuracy of the scattered point cloud. The point cloud filter algorithm combined with the structure calibration methods for the integrated measurement and processing system can ensure the final machining accuracy of the robot. Originality/value Aiming at the problems of large measurement noise interference, complex transformations between coordinate systems and difficult accuracy guarantee, this paper proposes structure calibration, point cloud filtering and point cloud-based planning algorithm, which can greatly improve the reliability and accuracy of the system. Simulation and experiment verify the final cutting accuracy of the whole system.


2021 ◽  
Vol 55 (4) ◽  
pp. 2705-2705
Author(s):  
Wayne W. Lukens ◽  
David K. Shuh ◽  
Norman C. Schroeder ◽  
Kenneth R. Ashley

Author(s):  
Jeff Ridgway ◽  
Bryant Slater

Abstract There are a number of applications in nuclear energy and hazardous waste disposal that require monitoring of fluids under extreme environments, including high levels of temperature, pressure, toxicity and radioactivity. Many of these applications will benefit from a monitoring technique that is external and non-invasive. Currently the sensors used are invasive, must reside inside the pressurized vessels and must penetrate the vessel walls, which can create a weakness in the vessel. Additionally, instruments that are used inside such containers must be exceptionally hardened to the environment. Information Systems Laboratories (ISL) has developed an external mass (gravimetric) measuring technique for monitoring nuclear coolant in Small Modular Reactors (SMRs), which will also work for measuring fluid levels in waste tanks, that avoids the problems inherent in invasive sensors. It utilizes a COTS gravitational sensor of unprecedented accuracy, leveraged via proper sensor placement geometry, to detect fluid changes of small amplitude from an outside position, obviating the need to penetrate the vessel. The technique is called Gravisense™. ISL has proven via simulation and experiment that this concept can be usefully applied to monitoring fluid levels in both nuclear reactors and large waste tanks. Numerical simulation algorithms were developed to calculate the gravity effect of small changes in water level, which were verified by experiments at the NIST Physical Simulator facility at the Oregon State University. The measured ultra-low noise levels of the superconducting gravimeter type which utilizes a Niobium sphere suspended in a magnetic field to attain its phenomenal accuracy, demonstrated that fluid levels in SMRs can be measured at least to within 3 cm. Furthermore, the method can distinguish between a contained leak (from reactor to containment vessel) from an external leak (from reactor to outside of containment). Additionally, simulations of waste canisters that hold spent fuel rods show that the fluid level measuring accuracy can potentially do better than 1 cm accuracy by measuring from below the vessel, and judicious placement of sensors on top of large waste tanks can potentially achieve a very impressive 2 mm measurement accuracy. These encouraging results prove that the Gravisense™ technique for fluid determination can be very useful in nuclear energy generation, testing, and research, as well as in waste monitoring situations that are difficult to monitor via traditional sensing technology. We believe that the next step should be to test the technique on canisters of the type that are currently storing waste in various DOE locations.


2018 ◽  
Vol 12 (2) ◽  
pp. 671-677
Author(s):  
Irda Sayuti ◽  
Yusni Siregar ◽  
Bintal Amin ◽  
Anthoni Agustien ◽  
Akmal Djamaan
Keyword(s):  

2017 ◽  
Author(s):  
Theodore W. Bowyer ◽  
Christopher J. Gesh ◽  
Daniel A. Haas ◽  
James C. Hayes ◽  
Jesse M. Johns ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document