Corrosion Testing of Stainless Steel-Zirconium:Metal Waste Forms

1999 ◽  
Vol 556 ◽  
Author(s):  
D. P. Abraham ◽  
L. J. Simpson ◽  
M. J. Devries ◽  
S. M. Mcdeavitt

AbstractStainless steel-zirconium (SS-Zr) alloys have been developed as waste forms for the disposal of metallic waste generated during the electrometallurgical treatment of spent nuclear fuel. The waste forms incorporate irradiated cladding hulls, components of the alloy fuel, noble metal fission products, and actinide elements. The baseline waste form is a stainless steel- 15 wt% zirconium (SS-15Zr) alloy. This article presents microstructures and some of the corrosion studies being conducted on the waste form alloys. Electrochemical corrosio n, immersion corrosion, and vapor hydration tests have been performed on various alloy compositions to evaluate corrosion behavior and resistance to selective leaching of simulated fission products. The SS-Zr waste forms immobilize and retain fission products very effectively and show potential for acceptance as high-level nuclear waste forms.

2000 ◽  
Vol 6 (S2) ◽  
pp. 368-369
Author(s):  
N.L. Dietz ◽  
D.D Keiser

Argonne National Laboratory has developed an electrometallurgical treatment process for metallic spent nuclear fuel from the Experimental Breeder Reactor-II. This process stabilizes metallic sodium and separates usable uranium from fission products and transuranic elements that are contained in the fuel. The fission products and other waste constituents are placed into two waste forms: a ceramic waste form that contains the transuranic elements and active fission products such as Cs, Sr, I and the rare earth elements, and a metal alloy waste form composed primarily of stainless steel (SS), from claddings hulls and reactor hardware, and ∼15 wt.% Zr (from the U-Zr and U-Pu-Zr alloy fuels). The metal waste form (MWF) also contains noble metal fission products (Tc, Nb, Ru, Rh, Te, Ag, Pd, Mo) and minor amounts of actinides. Both waste forms are intended for eventual disposal in a geologic repository.


1999 ◽  
Vol 5 (S2) ◽  
pp. 848-849
Author(s):  
J.S. Luo ◽  
D.P. Abraham

Stainless steel-zirconium (SS-Zr) alloys have been developed as waste forms to immobilize and retain fission products generated during the electrometallurgical treatment of spent nuclear fuel. The baseline waste form is a stainless steel-15 wt.% zirconium (SS-15Zr) alloy, which is prepared by melting appropriate amount of Type 316 stainless steel (SS316) and high purity zirconium. As zirconium has very low solubility in iron, the addition of zirconium to SS316 results in the formation of ZrFe2 -type Laves intermetallic phases. The corrosion behavior of stainless steel has been widely studied; however, the corrosion behavior of the Zr-based-intermetallic has not been previously investigated. In this paper, we present a microstructural characterization of the corrosion layer formed on the Zr-intermetallic phase using energy-filtering transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDS).Specimens of SS-15Zr alloy, crushed to 75 to 150 μm sizes, were immersed in 90°C deionized water for a period of two years.


1997 ◽  
Vol 481 ◽  
Author(s):  
S. M. Frank ◽  
K. J. Bateman ◽  
T. DiSanto ◽  
S. G. Johnson ◽  
T. L. Moschetti ◽  
...  

ABSTRACTArgonne National Laboratory has developed a composite ceramic waste form for the disposition of high level radioactive waste produced during electrometallurgical conditioning of spent nuclear fuel. The electrorefiner LiCl/KCl eutectic salt, containing fission products and transuranics in the chloride form, is contacted with a zeolite material which removes the fission products from the salt. After salt contact, the zeolite is mixed with a glass binder. The zeolite/glass mixture is then hot isostatic pressed (HIPed) to produce the composite ceramic waste form. The ceramic waste form provides a durable medium that is well suited to incorporate fission products and transuranics in the chloride form. Presented are preliminary results of the process qualification and characterization studies, which include chemical and physical measurements and product durability testing, of the ceramic waste form.


1999 ◽  
Vol 556 ◽  
Author(s):  
D. W. Esh ◽  
K. M. Goff ◽  
K. T. Hirsche ◽  
T. J. Battisti ◽  
M. F. Simpson ◽  
...  

AbstractA ceramic waste form is being developed by Argonne National Laboratory* (ANL) as part of the demonstration of the electrometallurgical treatment of spent nuclear fuel [1]. The halide, alkaline earth, alkali, transuranic, and rare earth fission products are stabilized in zeolite which is combined with glass and processed in a hot isostatic press (HIP) to form a ceramic composite. The mineral sodalite is formed in the HIP from the zeolite precursor. The process, from starting materials to final product, is relatively simple. An overview of the processing operations is given. The metrics that have been developed to measure the success or completion of processing operations are developed and discussed. The impact of variability in processing metrics on the durability of the final product is presented. The process is demonstrated to be robust for the type and range of operation metrics considered and the performance metric (PCT durability test) against which the operation metrics are evaluated.


Author(s):  
Jerzy Narbutt

<p>Recycling of actinides from spent nuclear fuel by their selective separation followed by transmutation in fast reactors will optimize the use of natural uranium resources and minimize the long-term hazard from high-level nuclear waste. This paper describes solvent extraction processes recently developed, aimed at the separation of americium from lanthanide fission products as well as from curium present in the waste. Depicted are novel poly-N-heterocyclic ligands used as selective extractants of actinide ions from nitric acid solutions or as actinide-selective hydrophilic stripping agents.</p>


MRS Advances ◽  
2018 ◽  
Vol 3 (31) ◽  
pp. 1735-1747
Author(s):  
Maik Lang ◽  
Eric C. O’Quinn ◽  
Jacob Shamblin ◽  
Jörg Neuefeind

ABSTRACTFor the past 30 years, the development of durable materials for radionuclide immobilization has been driven by efforts to dispose of wastes generated by the nuclear fuel cycle [National Research Council, ‘Waste Forms Technology and Performance: Final Report’, the National Academies Press, Washington D.C., 2011]. Many materials have been developed, but there still exist large gaps in the knowledge of fundamental modes of waste form degradation in repository environments. An important aspect of waste form science is the behavior of the materials under intense irradiation from decaying actinides and fission products. This irradiation induces a wide range of defects and disorder, the details of which depend on the specific waste form material. At the present time, it is not fully explained how radiation effects will influence the performance of nuclear waste forms and their long-term retention of fission products and actinides under operational conditions. The complex defect behavior and radiation damage must be understood over a range of length scales, from the initial atomic-scale defect structure to the long-range observable material modification. This is particularly challenging and requires advanced characterization techniques. This contribution describes how pair distribution function (PDF) analysis obtained from neutron total scattering experiments can be applied in the research field of waste form science to uniquely characterize radiation effects in a wide range of materials, including crystalline complex oxides and waste glasses. Neutron scattering strength does not have an explicit Z-dependence; this allows access to many low-Z elements, such as oxygen, that cannot be accurately studied with X-rays. In many cases, this can permit a detailed analysis of both cation (often high-Z) and anion (often low-Z) defect behavior. In contrast to traditional crystallography, which relies on long-range order, PDF analysis probes the local defect structure, including changes in site occupation, coordination, and bond distance. This is particularly important when characterizing aperiodic waste glasses with no long-range order at all. In contrast to X-ray characterization which requires very little sample mass (∼0.1 mg), neutron characterization (even at state-of-the-art spallation facilities) requires relatively large sample mass (∼50 - 100 mg). Obtaining this quantity is challenging for studies of irradiated materials, but by tailoring our experimental approach to use high-energy ions (GeV) with very high penetration depth, we are able to produce the required mass.


2000 ◽  
Vol 279 (2-3) ◽  
pp. 234-244 ◽  
Author(s):  
D.D Keiser ◽  
D.P Abraham ◽  
W Sinkler ◽  
J.W Richardson ◽  
S.M McDeavitt

1999 ◽  
Vol 556 ◽  
Author(s):  
S. G. Johnson ◽  
D. D. Keiser ◽  
M. Noy ◽  
T. O'Holleran ◽  
S. M. Frank

AbstractArgonne National Laboratory is developing an electrometallurgical treatment for spent fuel from the experimental breeder reactor II. A product of this treatment process is a metal waste form that incorporates the stainless steel cladding hulls, zirconium from the fuel and the fission products that are noble to the process, i.e., Tc, Ru, Pd, Rh, Ag. The nominal composition of this waste form is stainless steel/15 wt% zirconium/ 1–4 wt% noble metal fission products. The behavior of technetium is of particular importance from a disposal point of view for this waste form due to its long half life, 2.14E5 years, and its mobility in groundwater. To address these concerns a limited number of spiked metal waste forms were produced containing Tc. These surrogate waste forms were then studied using scanning electron microscopy (SEM) and selected leaching tests.


Sign in / Sign up

Export Citation Format

Share Document