scholarly journals Role of nitric oxide in human esophageal circular smooth muscle in vitro

1995 ◽  
Vol 110 (1) ◽  
pp. 157-164 ◽  
Author(s):  
William G. Richards ◽  
Jonathan S. Stamler ◽  
Lester Kobzik ◽  
David J. Sugarbaker
Life Sciences ◽  
2003 ◽  
Vol 72 (13) ◽  
pp. 1481-1493 ◽  
Author(s):  
Sophie Bayer ◽  
Abdeljalil Jellali ◽  
Francis Crenner ◽  
Dominique Aunis ◽  
Fabielle Angel

1992 ◽  
Vol 262 (1) ◽  
pp. G107-G112 ◽  
Author(s):  
S. Rattan ◽  
S. Chakder

The studies were performed in in vitro to examine the role of nitric oxide (NO) in nonadrenergic noncholinergic (NANC) nerve-mediated relaxation of the internal anal sphincter (IAS) smooth muscle strips of opossums. NO caused a concentration-dependent fall in the resting tension of the IAS. The inhibitory action of NO may be exerted directly on the IAS smooth muscle since it was not modified by the neurotoxin tetrodotoxin (1 x 10(-6) M), which abolished the neurally mediated fall in the IAS tension. The inhibitor of NO synthesis NG-nitro-L-arginine (L-NNA) produced concentration-dependent suppression of the neurally mediated fall in the IAS tension. The suppression of the neurally mediated IAS relaxation was stereoselective because D-NNA had no effect on the control responses. The suppressant action of L-NNA was selectively reversed by L-arginine in a concentration-dependent manner. The reversal was complete with 3 x 10(-4) M L-arginine. D-Arginine on the other hand, at the same concentration had no effect on L-NNA-suppressed IAS relaxation. Interestingly, the fall in the IAS tension caused by vasoactive intestinal polypeptide (VIP) (an inhibitory neurotransmitter in the IAS) was also inhibited by L-NNA (3 x 10(-5) M). From these data we conclude that NO or NO-like substances serve as important inhibitory mediators for the NANC nerve-mediated IAS relaxation. A part of the inhibitory action of VIP on the IAS involves NO-synthase pathway. The exact site of formation and release of NO or NO-like substances in response to NANC nerve stimulation remain to be investigated.


1996 ◽  
Vol 91 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Jeremy Ryan ◽  
Garry Jennings ◽  
Frank Dudley ◽  
Jaye Chin-Dusting

1. Cirrhosis is often complicated by disturbances in the systemic circulation. We have previously demonstrated decreased vascular responses to vasoconstrictors in forearm resistance arteries in subjects with alcoholic cirrhosis. In the current study we investigate the role of the potent endogenous vasodilator nitric oxide in the peripheral circulation of these patients. 2. Ten patients with alcoholic cirrhosis (Pugh grade A) and 10 age-matched control subjects were studied. The effect of blockade of nitric oxide synthesis was studied both in vivo in forearm resistance arteries using forearm venous occlusion plethysmography and in vitro in veins isolated from the forearm. The role of endothelium-derived nitric oxide was studied in vivo using the endothelium-dependent vasodilator acetylcholine. 3. Mean arterial pressure and forearm basal flow in vivo were similar in the two groups. The constrictor response (percentage decrease in forearm blood flow) to noradrenaline (100 ng/min) was 26% smaller in patients with cirrhosis (31.65 ± 2.64%) than in control subjects (42.75 ± 3.87%, P = 0.037). Constrictor responses to the nitric oxide synthase inhibitor NG-monomethyl-l-arginine were not different in the two groups. Dilator responses to acetylcholine were significantly attenuated in cirrhotic patients compared with control subjects. 4. To investigate the role of smooth muscle-derived nitric oxide in vitro, all veins were stripped of their endothelium. Responses to noradrenaline were significantly diminished in veins isolated from patients with cirrhosis compared with control subjects. Incubation with the nitric oxide synthase inhibitor Nω-nitro-l-arginine had no effect on responses to noradrenaline in veins from control subjects but significantly enhanced the maximal response to noradrenaline by 23.95% (range 3.77–100%, P = 0.043) in veins from patients with cirrhosis. 5. Responses to noradrenaline were attenuated in vivo in forearm resistance arteries in patients with alcoholic cirrhosis. This impairment was also apparent in forearm isolated veins, stripped of the endothelium. Our data exclude a major role for endothelium-derived nitric oxide but highlight a possible role for smooth muscle-derived nitric oxide.


1991 ◽  
Vol 261 (6) ◽  
pp. G1012-G1016 ◽  
Author(s):  
C. Du ◽  
J. Murray ◽  
J. N. Bates ◽  
J. L. Conklin

Activation of intrinsic nonadrenergic noncholinergic (NANC) esophageal nerves during peristalsis or by electrical field stimulation (EFS) in vitro produces a hyperpolarization followed by a depolarization of the circular smooth muscle of the opossum esophagus. N omega-nitro-L-arginine (L-NNA), an inhibitor of nitric oxide synthase, and nitric oxide (NO) were used to test the hypothesis that NO or a NO-containing compound is a mediator of this NANC nerve-induced hyperpolarization of circular esophageal smooth muscle. The transmembrane potential difference of esophageal circular smooth muscle cells was recorded with glass microelectrodes. Nerve-mediated membrane responses were evoked by single electrical pulses of 0.5 ms duration and 50 V amplitude. L-NNA abolished the initial hyperpolarization and reduced the amplitude of and the time to maximal depolarization. L-Arginine (1 mM), the substrate for NO synthase, antagonized the effect of L-NNA. Exogenous NO produced hyperpolarization of the smooth muscle membrane potential and attenuated the amplitudes of EFS-induced hyperpolarization and depolarization. The effect of NO was blocked neither by L-NNA nor by tetrodotoxin (1 microM). The data support the hypothesis that NO or a NO-containing compound mediates NANC nerve-induced responses of the esophageal smooth muscle membrane.


2014 ◽  
Vol 18 (5) ◽  
pp. 425 ◽  
Author(s):  
Sang Eok Lee ◽  
Dae Hoon Kim ◽  
Young Chul Kim ◽  
Joung-Ho Han ◽  
Woong Choi ◽  
...  

2010 ◽  
Vol 298 (6) ◽  
pp. G896-G907 ◽  
Author(s):  
Anne-Marie Pelletier ◽  
Shriram Venkataramana ◽  
Kurtis G. Miller ◽  
Brian M. Bennett ◽  
Dileep G. Nair ◽  
...  

Hyperplasia of smooth muscle contributes to the thickening of the intestinal wall that is characteristic of inflammation, but the mechanisms of growth control are unknown. Nitric oxide (NO) from enteric neurons expressing neuronal NO synthase (nNOS) might normally inhibit intestinal smooth muscle cell (ISMC) growth, and this was tested in vitro. In ISMC from the circular smooth muscle of the adult rat colon, chemical NO donors inhibited [3H]thymidine uptake in response to FCS, reducing this to baseline without toxicity. This effect was inhibited by the guanylyl cyclase inhibitor ODQ and potentiated by the phosphodiesterase-5 inhibitor zaprinast. Inhibition was mimicked by 8-bromo (8-Br)-cGMP, and ELISA measurements showed increased levels of cGMP but not cAMP in response to sodium nitroprusside. However, 8-Br-cAMP and cilostamide also showed inhibitory actions, suggesting an additional role for cAMP. Via a coculture model of ISMC and myenteric neurons, immunocytochemistry and image analysis showed that innervation reduced bromodeoxyuridine uptake by ISMC. Specific blockers of nNOS (7-NI, NAAN) significantly increased [3H]thymidine uptake in response to a standard stimulus, showing that nNOS activity normally inhibits ISMC growth. In vivo, nNOS axon number was reduced threefold by day 1 of trinitrobenzene sulfonic acid-induced rat colitis, preceding the hyperplasia of ISMC described earlier in this model. We conclude that NO can inhibit ISMC growth primarily via a cGMP-dependent mechanism. Functional evidence that NO derived from nNOS causes inhibition of ISMC growth in vitro predicts that the loss of nNOS expression in colitis contributes to ISMC hyperplasia in vivo.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 420
Author(s):  
Su-Jung Hwang ◽  
Ye-Seul Song ◽  
Hyo-Jong Lee

Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.


1996 ◽  
Vol 270 (6) ◽  
pp. G932-G938 ◽  
Author(s):  
J. Jury ◽  
K. R. Boev ◽  
E. E. Daniel

Single smooth muscle cells from the opossum body circular muscle were isolated and whole cell currents were characterized by the whole cell patch-clamp technique. When the cells were held at -50 mV and depolarized to 70 mV in 20-mV increments, initial small inactivating inward currents were evoked (-30 to 30 mV) followed by larger sustained outward currents. Depolarization from a holding potential of -90 mV evoked an initial fast inactivating outward current sensitive to 4-aminopyridine but not to high levels of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). The outward currents reversed near K+ equilibrium potential and were abolished when KCl was replaced by CsCl in the pipette solution. The sustained outward current was inhibited by quinine and cesium. High EGTA in the pipette solution reduced but did not abolish the sustained outward currents, suggesting that both Ca(2+)-dependent and -independent currents were evoked. The nitric oxide (NO)-releasing agents Sin-1 and sodium nitroprusside increased outward K+ currents. High levels of EGTA in the pipette solution abolished the increase in outward current induced by Sin-1. The presence of cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum (SR) Ca2+ pump, blocked the effects of NO-releasing agents. We conclude that NO release activates K+ outward currents in opossum esophagus circular muscle, which may depend on Ca2+ release from the SR stores.


Author(s):  
Maria Cristina Budani ◽  
Gian Mario Tiboni

Nitric oxide (NO) is formed during the oxidation of L-arginine to L-citrulline by the action of multiple isoenzymes of NO synthase (NOS): neuronal NOS (nNOS), endotelial NOS (eNOS), and inducible NOS (iNOS). NO plays a relevant role in the vascular endothelium, in central and peripheral neurons, and in immunity and inflammatory systems. In addition, several authors showed a consistent contribution of NO to different aspects of the reproductive physiology. The aim of the present review is to analyse the published data on the role of NO within the ovary. It has been demonstrated that the multiple isoenzymes of NOS are expressed and localized in the ovary of different species. More to the point, a consistent role was ascribed to NO in the processes of steroidogenesis, folliculogenesis, and oocyte meiotic maturation in in vitro and in vivo studies using animal models. Unfortunately, there are few nitric oxide data for humans; there are preliminary data on the implication of nitric oxide for oocyte/embryo quality and in-vitro fertilization/embryo transfer (IVF/ET) parameters. NO plays a remarkable role in the ovary, but more investigation is needed, in particular in the context of human ovarian physiology.


Sign in / Sign up

Export Citation Format

Share Document