electrical pulses
Recently Published Documents


TOTAL DOCUMENTS

474
(FIVE YEARS 93)

H-INDEX

43
(FIVE YEARS 6)

Author(s):  
Aayush Patel

Abstract: The paper focuses on an application that can be developed on android, Android is a multipurpose operating system based on Linux for mobile devices such as smartphones and tablet computers, it contains several versions such as donot, ice-cream sandwich, KitKat, pie, etc. Function generator is a device used to generate a wide range of standardized electrical pulses such as sine wave, square wave and sawtooth wave whose frequency ranges from 0.1Hz to 11,000 Hz .In this paper we aim to review how this function generator can be developed using an android mobile application. The mobile phone application uses android in order to implement a function generator which generates different A.C sources available in the laboratory. This can be used extensively in remote areas where it is not easy to carry the function generator. Keyword: Function Generator, Android, CRO, Signals


Biomimetics ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Rodi Abdalkader ◽  
Satoshi Konishi ◽  
Takuya Fujita

Human skeletal muscles are characterized by a unique aligned microstructure of myotubes which is important for their function as well as for their homeostasis. Thus, the recapitulation of the aligned microstructure of skeletal muscles is crucial for the construction of an advanced biomimetic model aimed at drug development applications. Here, we have developed a 3D printed micropatterned microfluid device (3D-PMMD) through the employment of a fused deposition modeling (FDM)-based 3D printer and clear filaments made of biocompatible polyethylene terephthalate glycol (PETG). We could fabricate micropatterns through the adjustment of the printing deposition heights of PETG filaments, leading to the generation of aligned half-cylinder-shaped micropatterns in a dimension range from 100 µm to 400 µm in width and from 60 µm to 150 µm in height, respectively. Moreover, we could grow and expand C2C12 mouse myoblast cells on 3D-PMMD where cells could differentiate into aligned bundles of myotubes with respect to the dimension of each micropattern. Furthermore, our platform was applicable with the electrical pulses stimulus (EPS) modality where we noticed an improvement in myotubes maturation under the EPS conditions, indicating the potential use of the 3D-PMMD for biological experiments as well as for myogenic drug development applications in the future.


ACS Omega ◽  
2021 ◽  
Author(s):  
Hongqi Lu ◽  
Yanwei Liu ◽  
Baisheng Nie ◽  
Xiujuan Chen ◽  
Xiaokai Xu

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jing Li ◽  
Jingjing Wang ◽  
Xiaobo Zhang ◽  
Xiao Zhang ◽  
Hongmei Gao ◽  
...  

Abstract Background High-Frequency Irreversible Electroporation (H-FIRE) is a novel technology for non-thermal ablation. Different from Irreversible electroporation (IRE), H-FIRE delivers bipolar electrical pulses without muscle contraction and does not cause electrolysis. Currently, little is known regarding the cardiac safety during the administration of H-FIRE on liver. The aim of this study was to evaluate the changes of electrocardiogram (ECG) and biomarkers of cardiac damage during asymmetrical waveform of H-FIRE therapy in vivo. Methods The swines (n = 7) in IRE group, which used 100 pulses (2200 V, 100–100 μs configuration), were administrated with muscle relaxant under anesthesia. In the absence of muscle relaxant, 7 swines in H-FIRE group were performed with 2400 pulses (3000 V, 5–3–3–5 μs configuration). Midazolam (0.5 mg/kg) and xylazine hydrochloride (20 mg/kg) were given to induce sedation, followed by Isoflurane (2.5%, 100% oxygen, 3 L/min) to maintain sedation in all the swines. Limb lead ECG recordings were analyzed by two electrophysiologists to judge the arrhythmia. Cardiac and liver tissue was examined by pathology technique. Results The ablation zones were larger in H-FIRE than IRE. Both IRE and H-FIRE did not affect the autonomous cardiac rhythm. Even when the electrical signal of IRE and H-FIRE fell on ventricular vulnerable period. Moreover, cTnI in IRE group showed an increase in 4 h after ablation, and decreased to baseline 72 h after ablation. However, cTnI showed no significant change during the administration of H-FIRE. Conclusions The study suggests an asymmetrical waveform for H-FIRE is a promising measure for liver ablation. The results were based on normal liver and the swines without potential cardiac diseases. With the limitations of these facts, asymmetrical waveform for H-FIRE of liver tissue seems relatively safe without major cardiac complications. The safety of asymmetrical waveform for H-FIRE needs to evaluate in future.


Author(s):  
Beatriz S. Arruda ◽  
Carolina Reis ◽  
James J. Sermon ◽  
Alek Pogosyan ◽  
Peter Brown ◽  
...  

Abstract Background Resting tremor is one of the most common symptoms of Parkinson’s disease. Despite its high prevalence, resting tremor may not be as effectively treated with dopaminergic medication as other symptoms, and surgical treatments such as deep brain stimulation, which are effective in reducing tremor, have limited availability. Therefore, there is a clinical need for non-invasive interventions in order to provide tremor relief to a larger number of people with Parkinson’s disease. Here, we explore whether peripheral nerve stimulation can modulate resting tremor, and under what circumstances this might lead to tremor suppression. Methods We studied 10 people with Parkinson’s disease and rest tremor, to whom we delivered brief electrical pulses non-invasively to the median nerve of the most tremulous hand. Stimulation was phase-locked to limb acceleration in the axis with the biggest tremor-related excursion. Results We demonstrated that rest tremor in the hand could change from one pattern of oscillation to another in space. Median nerve stimulation was able to significantly reduce (− 36%) and amplify (117%) tremor when delivered at a certain phase. When the peripheral manifestation of tremor spontaneously changed, stimulation timing-dependent change in tremor severity could also alter during phase-locked peripheral nerve stimulation. Conclusions These results highlight that phase-locked peripheral nerve stimulation has the potential to reduce tremor. However, there can be multiple independent tremor oscillation patterns even within the same limb. Parameters of peripheral stimulation such as stimulation phase may need to be adjusted continuously in order to sustain systematic suppression of tremor amplitude.


2021 ◽  
Vol 946 (1) ◽  
pp. 012012
Author(s):  
S A Gulyakov ◽  
N S Stovbun

Abstract The paper is devoted to the development process of the geophysical pulse voltage generator. The peculiarity of the generator lies in the non-specific purpose of this type of construction. Its main function is the controlled effect on the active faults of seismically dangerous zones. The results of the field experiment with the constructed device from 2018 to 2020 are presented. During the experiments, estimations and theoretical analysis we have obtained the seismic noise recorded by means of molecular electronic instruments and determined the periods of the electrical pulses. Operational parameters of the generator were identified on the basis of experiment results. The software and hardware elements of the system were upgraded and, as a result, a new version of the geophysical pulse voltage generator was developed.


Fuel ◽  
2021 ◽  
Vol 306 ◽  
pp. 121621
Author(s):  
Zhen Ni ◽  
Baiquan Lin ◽  
Xiangliang Zhang ◽  
Xuan Cao ◽  
Lubin Zhong ◽  
...  

2021 ◽  
Author(s):  
Cong Shen ◽  
Xu Gao ◽  
Cheng Chen ◽  
Shan Ren ◽  
Jianlong Xu ◽  
...  

Abstract Artificial synapses that integrate functions of sensing, memory and computing are highly desired for developing brain-inspired neuromorphic hardware. In this work, an optoelectronic synapse based on the ZnO nanowire (NW) transistor is achieved, which can be used to emulate both the short-term and long-term synaptic plasticity. Synaptic potentiation is present when the device is stimulated by light pulses, arising from the light-induced O2 desorption and the persistent photoconductivity behavior of the ZnO NW. On the other hand, synaptic depression occurs when the device is stimulated by electrical pulses in dark, which is realized by introducing a charge trapping layer in the gate dielectric to trap carriers. Simulation of a neural network utilizing the ZnO NW synapses is carried out, demonstrating a high recognition accuracy over 90% after only 20 training epochs for recognizing the Modified National Institute of Standards and Technology (MNIST) digits. The present nanoscale optoelectronic synapse has great potential in the development of neuromorphic visual systems.


Author(s):  
Giuliano Taccola ◽  
Stanislav Culaclii ◽  
Hui Zhong ◽  
Parag N. Gad ◽  
Wentai Liu ◽  
...  

In intact and spinal injured anesthetized animals, stimulation levels that did not induce any visible muscle twitches, were used to elicit motor evoked potentials (MEPs) of varying amplitude, reflecting the temporal and amplitude dynamics of the background excitability of spinal networks. To characterize the physiological excitability states of neuronal networks driving movement, we designed five experiments in awake rats chronically implanted with an epidural stimulating interface, with and without a spinal cord injury (SCI). Firstly, an uninjured rat at rest underwent a series of single electrical pulses at sub motor-threshold intensity, which generated responses that were continuously recorded from flexor and extensor hindlimb muscles, showing an intrinsic patterned modulation of MEPs. Responses were recruited by increasing strengths of stimulation and the amplitudes were moderately correlated between flexors and extensors. Next, after SCI, four awake rats at rest showed electrically induced MEPs, varying largely in amplitude of both flexors and extensors that were mainly synchronously modulated. After full anesthesia, MEP amplitudes were largely reduced, although stimulation still generated random baseline changes, unveiling an intrinsic stochastic modulation. The current five cases demonstrate a methodology that can be feasibly replicated in a broader group of awake and behaving rats to further define experimental treatments involving neuroplasticity. Beside validating a new technology for a neural stimulating interface, the present data support the broader message that there were intrinsic patterned and stochastic modulation of baseline excitability reflecting the dynamics of physiological states of spinal networks.


2021 ◽  
Vol 11 (5) ◽  
pp. 7610-7614
Author(s):  
S. Pachamuthu ◽  
D. Najumnissa ◽  
K. Sankaranarayanan ◽  
R. P. Ramachandran

An electroporator is an instrument used for delivering electrical pulses to a tumor. In this work, an electroporator consisting of three main system blocks, namely High Voltage (HV) source, nanosecond (ns) switching, and pulse generation, was designed, developed, and evaluated to generate high voltage ns pulses to treat tumors. The high-voltage source block was used to convert the 9.6V DC from the battery to a variable HV output and store this charge for later use. The ns switching block contained a MOSFET-based low-side switch which applies short ns pulses to the load. The pulse generation block generates short ns pulses and supplies the adequate current to turn on the MOSFET at a quicker rate aiding the application of these pulses to the load. This process was simulated using PSpice software and the results are presented.


Sign in / Sign up

Export Citation Format

Share Document